我们打算证明,我们可以构建专用硬件,使用忆阻器和忆电容将神经网络直接映射到该硬件上,从而提高网络的能源效率。我们将使用以集成电路为重点的模拟程序 (SPICE) 来模拟我们的忆电容和忆阻器。使用此模型,我们将创建一个忆阻和忆电容元件的储存器,并在一系列忆电容与忆阻器比率中评估我们的设计,同时测试储存器结构,包括小世界、交叉开关、随机、分层和幂律实现。我们假设我们的设计将大大提高神经网络的能源效率和性能。
摘要 - 由人脑的结构和功能所吸引的神经形态计算已成为开发节能和强大的计算系统的有前途的方法。神经形态计算在航空航天应用中提供了显着的处理速度和功耗优势。这两个因素对于实时数据分析和决策至关重要。然而,刺激性的空间环境特别是在辐射的存在下,对这些计算系统的可靠性和性能构成了重大挑战。本文全面地调查了航空航天应用中抗辐射神经形态计算系统的整合。我们探讨了空间辐射,审查现有的解决方案和开发,当前对空间应用中使用的神经形态计算系统的案例研究,讨论未来方向以及讨论该技术在未来太空任务中的潜在好处。索引项 - 神经局计算;航空应用;抗辐射计算;太空环境;节能计算;实时数据分析;决策;未来的太空任务。
虽然基于脉冲神经网络 (SNN) 的神经形态计算架构作为实现生物可信机器学习的途径越来越受到关注,但人们的注意力仍然集中在神经元和突触等计算单元上。从这种神经突触视角出发,本文试图探索神经胶质细胞,特别是星形胶质细胞的自我修复作用。这项工作调查了与星形胶质细胞计算神经科学模型的更强相关性,以开发具有更高生物保真度的宏观模型,准确捕捉自我修复过程的动态行为。硬件-软件协同设计分析表明,生物形态星形胶质细胞调节有可能自我修复神经形态硬件系统中的硬件实际故障,并且在 MNIST 和 F-MNIST 数据集上的无监督学习任务中具有明显更好的准确性和修复收敛性。我们的实现源代码和训练模型可在 https://github.com/NeuroCompLab-psu/Astromorphic Self Repair 上找到。
摘要 —本文提出了一种神经形态音频处理的新方法,将脉冲神经网络 (SNN)、Transformers 和高性能计算 (HPC) 的优势整合到 HPCNeuroNet 架构中。利用英特尔 N-DNS 数据集,我们展示了该系统处理多种语言和噪声背景下的不同人类声音录音的能力。我们方法的核心在于将 SNN 的时间动态与 Transformers 的注意机制相融合,使模型能够捕捉复杂的音频模式和关系。我们的架构 HPC-NeuroNet 采用短时傅里叶变换 (STFT) 进行时频表示,采用 Transformer 嵌入进行密集向量生成,采用 SNN 编码/解码机制进行脉冲序列转换。通过利用 NVIDIA 的 GeForce RTX 3060 GPU 和英特尔的 Core i9 12900H CPU 的计算能力,系统的性能得到进一步增强。此外,我们在 Xilinx VU37P HBM FPGA 平台上引入了硬件实现,针对能源效率和实时处理进行了优化。所提出的加速器在 100 MHz 下实现了 71.11 千兆操作每秒 (GOP/s) 的吞吐量,片上功耗为 3.55 W。与现成设备和最新最先进实现的比较结果表明,所提出的加速器在能源效率和设计灵活性方面具有明显优势。通过设计空间探索,我们提供了优化音频任务核心容量的见解。我们的发现强调了集成 SNN、Transformers 和 HPC 进行神经形态音频处理的变革潜力,为未来的研究和应用树立了新的标杆。
神经形态计算机的价值主要取决于我们对其进行编程以执行相关任务的能力。目前,神经形态计算机大多局限于从深度学习改编而来的机器学习方法。然而,如果我们能利用神经形态计算机的计算特性来发挥其全部功能,那么它的潜力将远远超出深度学习。神经形态编程必然不同于传统编程,需要我们对编程的总体思维方式进行范式转变。本文的贡献包括:1)对神经形态计算机背景下“编程”含义的概念分析;2)探索神经形态计算中前景广阔但被忽视的现有编程范式。目标是拓展神经形态编程方法的视野,从而使研究人员能够摆脱现有方法的束缚,探索新的方向。
神经形态架构的底部两层经过设计,并被证明能够进行在线聚类和监督分类。使用主动脉冲树突模型,单个树突段执行的功能与经典的积分和激发点神经元基本相同。然后,单个树突由多个段组成,并能够进行在线聚类。虽然这项工作主要侧重于树突功能,但可以通过组合多个树突来形成多点神经元。为了展示其聚类能力,树突被应用于脉冲分类——脑机接口应用的重要组成部分。监督在线分类被实现为由多个树突和简单投票机制组成的网络。树突独立且并行地运行。网络以在线方式学习,并能适应输入流中的宏观变化。
图 1:机器人硬件和基于事件的视频。(A)移动机器人由带有 DAVIS346 事件摄像头的 TurtleBot3 Burger 构成。装有 48 个 SpiN-Naker 芯片的 Spinn-5 板(59)用于模拟我们的 SNN 模型。(B)该模型使用机器人在具有不同视觉混乱程度的自然环境中行驶时记录的数据进行训练/测试。(C)每当像素改变强度时,摄像头就会连续产生“事件”。'x' 和 'y':像素地址,'t':时间(来自原始 DAVIS 输出的纳秒时间分辨率),'on':从暗到亮的变化,'off':从亮到暗的变化。(D)传统视频具有固定速率的静态强度帧。(E)在向前运动期间集成“事件”,可以在事件摄像机的运动“帧”中可视化场景。红色和蓝色代表事件的极性,如图 (C) 所示。
虽然基于事件的空间态势感知提供了显著的优势,但基于事件的传感范式也带来了传统基于帧的 SSA 所没有的新挑战。快速而微弱的点源很难在其他来源产生的虚假变化检测中识别出来,尤其是来自昆虫、蝙蝠和飞机的检测。神经形态传感器缺乏绝对亮度信息,当 RSO 和大气物体的轨迹从观察者的角度来看相似时,更难区分它们。虚假检测不仅限于大气伪影,也可能是由于传感器噪声造成的。虽然最近的神经形态传感器与旧型号相比已显著改善了噪声特性,但仍然希望尽可能接近本底噪声来检测越来越微弱的物体。
摘要近年来,医疗保健行业对小型化,低功耗,快速治疗和非侵入性临床策略的需求不断增长。为了满足这些需求,医疗保健专业人员正在寻求新的技术范式,以提高诊断准确性,同时确保患者合规性。使用硬件和软件中的神经模型来复制大脑样行为,可以通过提供低功率,低潜伏期,小足迹和高带宽解决方案来帮助您进入医学新时代。本文概述了医学上最新的神经形态进步,包括医学成像和癌症诊断,生物信号的诊断和生物医学界面,例如运动,认知和感知假体。对于每个部分,我们提供了示例,说明了如何成功地与传统人工智能算法竞争,证明了神经形态工程以满足需求并改善患者结果的潜力。最后,我们讨论了当前在将神经形态硬件与非神经形态技术拟合的斗争中,并为硬件兼容性中的未来瓶颈提出了潜在的解决方案。
在许多神经形态工作流程中,模拟器在重要任务中发挥着至关重要的作用,例如训练脉冲神经网络、运行神经科学模拟以及设计、实施和测试神经形态算法。当前可用的模拟器适用于神经科学工作流程(例如 NEST 和 Brian2)或深度学习工作流程(例如 BindsNET)。问题是,基于神经科学的模拟器速度慢且可扩展性不强,而基于深度学习的模拟器不支持神经形态工作负载的某些典型功能(例如突触延迟)。在本文中,我们解决了文献中的这一空白,并提出了 SuperNeuro,这是一种快速且可扩展的神经形态计算模拟器,能够进行同质和异构模拟以及 GPU 加速。我们还提供了初步结果,将 SuperNeuro 与广泛使用的神经形态模拟器(如 NEST、Brian2 和 BindsNET)在计算时间方面进行了比较。我们证明,对于小型稀疏网络,SuperNeuro 比其他一些模拟器快约 10 × –300 倍。对于大型稀疏网络和大型密集网络,SuperNeuro 比其他模拟器分别快约 2.2 × –3.4 倍。