神经形态处理有望高能效率和快速响应率,使其成为实现自动驾驶资源受限机器人的理想候选者。对于高水平的视觉感知而言,它可能对复杂的神经网络有益。但是,完全神经形态的解决方案还需要解决低级控制任务。值得注意的是,目前仍然具有挑战性,即使是基本的低级控制器,例如比例综合衍生(PID)控制器。具体来说,很难合并整体和衍生部分。为了解决这个问题,我们提出了一个神经形态控制器,该神经形态控制器在学习过程中结合了比例,积分和衍生途径。我们的方法包括整体途径的新型输入阈值适应机制。此输入加权阈值适应(IWTA)引入了每个突触连接的额外重量,用于适应后突触后神经元的阈值。我们通过使用不同时间常数使用神经元来解决衍生术语。我们首先分析了提出的机制的性能和限制,然后通过将其在连接到开源的小型Crazyflie四极管上的微控制器上实现,将其控制在测试中,以取代内部的速率控制器。我们证明了在存在干扰的情况下飞行的生物启发算法的稳定性。当前的工作代表了用神经形态算法控制高度动态系统的实质性一步,从而推进了神经形态处理和机器人技术。此外,整体是任何时间任务的重要组成部分,因此提出的输入加权阈值适应(IWTA)机制可能具有超出控制任务的影响。
2.1背景和相关理论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.1.1神经形态相机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.1.2望远镜。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 2.1.3天文统计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.2天文学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.2.1。。。。。。。。。。。。。。。。。13 2.2.2地球观测的轨道更新。。。。。。。。。。。。。。。。。。。。。14 2.3摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15
摘要。目标。与传统数字计算相比,神经系统中的计算使用不同的计算原语,在不同的硬件上运行,因此在使用时间、空间和能量等物理资源方面受到与数字计算不同的约束。为了更好地理解具有类似时空和能量约束的物理介质上的神经计算,神经形态工程领域旨在设计和实现电子系统,在 VLSI 硬件中模拟神经系统在多个生物组织层面的组织和功能,从单个神经元到大型电路和网络。混合模拟/数字神经形态 VLSI 系统结构紧凑、功耗低,并且独立于模型大小和复杂性实时运行。方法。本文重点介绍了当前在从突触到系统级的多个生物组织层面上将神经形态系统与神经系统进行接口的努力,并讨论了未来具有更复杂神经形态电路的生物混合系统的前景。主要结果。单个硅神经元已成功与无脊椎动物和脊椎动物神经网络接口。这种方法允许研究传统技术无法获得的神经特性,同时提供传统数值建模方法无法实现的真实生物学背景。在网络层面,神经元群有望与数百或数千个硅神经元的神经形态处理器进行双向通信。最近对 BMI 的研究表明,使用当前的神经形态技术可以实现这一点。意义。生物神经元和各种复杂程度的 VLSI 神经形态系统之间的生物混合接口已开始出现在文献中。当前神经形态系统的主要目的是作为研究与神经动力学相关的基本问题的计算工具,其复杂性现在允许与大型神经网络和电路直接接口,从而为神经工程系统、神经假体和神经康复带来潜在的有趣的临床应用。
摘要 - 纤维形的备忘录吸引了人们作为潜在的可穿戴电子产品的关注。在这里,为人工突触和神经形态计算提供了带有纤维形状的Cu-ion扩散的备忘录。纤维形扩散的备忘录在扫描扫描下表现出逐渐的电导调节特性。Memristor成功地实现了典型的突触可塑性,包括EPSC,PPF,PPD,LTP/LTD和学习行为。散射回忆器的活性Cu 2 +与生物突触中的Ca 2 +扩散相似,这是实现突触可塑性功能的基础。纤维形的Cu 2 +扩散的回忆录充当人造突触为下一代可穿戴神经形态计算系统铺平道路。
•深度学习 /常规人工神经网络•并行数据处理(背景和变化检测,卷积等)•线性代数(MVM,交叉相关,L1-NORM等)•经典机器学习(SVMS,K-Nearest邻居,群集,群集)
引言 在以人为中心的非结构化环境中使机器人和自主系统更加智能是机器人技术的关键目标之一,这也使其成为最具活力的技术发展领域之一。这种智能的关键因素是能够良好且快速地理解复杂而动态的环境,以可靠地支持其他功能,如运动规划和控制;与人类、物体和其他智能体的安全交互;以及从经验中自主学习。神经网络和数据驱动的训练算法为理解环境打开了两个重要窗口:图像和声音处理 (1)。这些算法在大量数据集上实现了最先进的性能,通常甚至超过人类的表现,是实现机器人智能感知和行为的主要候选者 (2)。然而,机器人用例对人工智能 (AI) 算法的功耗、延迟、自适应性和数据效率提出了尤为严格的要求 (3、4)。如今,尽管基于神经网络的算法与之前手工制作的人工智能解决方案相比具有优势(5、6),但我们仍然缺乏真正智能、敏捷的机器人,能够在日常生活中安全、顺畅地与物体、彼此和人类互动。这与即使是简单的动物也能产生智能行为并在复杂的现实环境中互动形成了鲜明的对比。动物可以快速
实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
近年来,脑机接口 (BMI) 发展迅速,但仍面临准确性和稳定性等关键问题。理想情况下,BMI 系统应是一种可植入的神经假体,与大脑紧密连接并集成。然而,大脑和机器的异质性阻碍了两者之间的深度融合。神经形态计算模型模仿了生物神经系统的结构和机制,为开发高性能神经假体提供了一种有前途的方法。神经形态模型的生物学合理性使大脑和机器之间能够以离散脉冲的形式进行同质信息表示和计算,促进了深度脑机融合,为高性能和长期可用的 BMI 系统带来了新的突破。此外,神经形态模型可以以超低能耗计算,因此适用于可植入大脑的神经假体设备。神经形态计算和 BMI 的交叉具有巨大的潜力,可以引领可靠、低功耗的可植入 BMI 设备的开发,并推动 BMI 的开发和应用。