3行搜索方法30 3.1步长。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31沃尔夫条件。。。。。。。。。。。。。。。。。。。。。。。。。。。33戈德斯坦条件。。。。。。。。。。。。。。。。。。。。。。。。。36足够的减少和回溯。。。。。。。。。。。。。。。。。。。37 3.2线路搜索方法的收敛性。。。。。。。。。。。。。。。。。。。37 3.3收敛速率。。。。。。。。。。。。。。。。。。。。。。。。。。。。41最陡下降的收敛速率。。。。。。。。。。。。。。。。。。。42牛顿的方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44个准Newton方法。。。。。。。。。。。。。。。。。。。。。。。。。。46 3.4 Hessian修饰的牛顿方法。。。。。。。。。。。。。。。48特征值修改。。。。。。。。。。。。。。。。。。。。。。。。。。49添加一个身份的倍数。。。。。。。。。。。。。。。。。。。。。51修改的cholesky分解。。。。。。。。。。。。。。。。。。。。。52修改对称的不合格分解。。。。。。。。。。。。。。。54 3.5步长选择算法。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6插值。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>57初始步长。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>59和wolfe条件的线搜索年龄。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>60个注释和参考。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>62个练习。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 63 div>62个练习。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>63 div>
摘要:近年来,内存计算 (CIM) 得到了广泛研究,通过减少数据移动来提高计算的能效。目前,CIM 经常用于数据密集型计算。数据密集型计算应用,例如机器学习 (ML) 中的各种神经网络 (NN),被视为“软”计算任务。“软”计算任务是可以容忍低计算精度且准确度损失较小的计算。然而,针对数值计算的“硬”任务需要高精度计算,同时也伴随着能效问题。数值计算存在于许多应用中,包括偏微分方程 (PDE) 和大规模矩阵乘法。因此,有必要研究用于数值计算的 CIM。本文回顾了用于数值计算的 CIM 的最新发展。详细推导了求解偏微分方程的不同种类的数值方法和矩阵的变换。本文还讨论了对数值计算效率影响很大的大规模矩阵的迭代计算问题,重点介绍了基于ReRAM的偏微分方程求解器的工作过程,并总结了其他PDE求解器以及CIM在数值计算中的研究进展,最后对高精度CIM在数值计算中的应用前景和未来进行了展望。
术语“数值风洞”,也称为“数字风洞”。在互联网上搜索这些术语通常会找到超级计算机系统,例如日本国家航空实验室 (NAL) 部署的“数值风洞系统”。这是前科学技术厅下属的一个实验室,后来并入日本宇宙航空研究开发机构 (JAXA)。第一个基于超级计算机的数值风洞于 1993 年推出。作为第一代并行矢量超级计算机,它成为世界上最优秀的计算系统,跻身 TOP500 榜单 (http://www.top500.org) 之列,并获得了戈登贝尔奖。尽管数值风洞与超级计算机密切相关,但本文讨论的并不是数值风洞本身,而是更广泛意义上的实用性、概念、目的和成果。
污染扩散的风洞和数值模拟:一种混合方法 1. 介绍.....................................................................................................................................................................1 1.1 流体建模.....................................................................................................................................................2 1.2 计算建模......................................................................................................................................................2 1.3 混合建模......................................................................................................................................................3 2. 空气污染空气动力学的里程碑....................................................................................................................4 2.1 流体建模的应用年表....................................................................................................................5 2.2 计算流体动力学的应用年表....................................................................................................................7 3. 相似性和流体建模概念....................................................................................................................9 3.1 烟囱羽流建模.....................................................................................................................................15 3.2 与烟囱相互作用的烟囱羽流建模....................................................................................................................1结构.................................
污染扩散的风洞和数值模拟:一种混合方法 1. 介绍.....................................................................................................................................................1 1.1 流体建模....................................................................................................................................2 1.2 计算建模....................................................................................................................................2 1.3 混合建模.......................................................................................................................................3 2. 空气污染空气动力学的里程碑.........................................................................................................4 2.1 流体建模的应用年表....................................................................................................................5 2.2 计算流体动力学的应用年表....................................................................................................7 3. 相似性和流体建模概念....................................................................................................................9 3.1 烟囱羽流建模....................................................................................................................15 3.2 与烟囱相互作用的烟囱羽流建模....................................................................................................1结构.................................................................................16 3.3 建模与自然通风................................
术语“数值风洞”,也称为“数字风洞”。在互联网上搜索这些术语通常会找到超级计算机系统,例如日本国家航空实验室 (NAL) 部署的“数值风洞系统”。这是前科学技术厅下属的一个实验室,后来并入日本宇宙航空研究开发机构 (JAXA)。第一个基于超级计算机的数值风洞于 1993 年推出。作为第一代并行矢量超级计算机,它成为世界上最优秀的计算系统,跻身 TOP500 榜单 (http://www.top500.org) 之列,并获得了戈登贝尔奖。尽管数值风洞与超级计算机密切相关,但本文讨论的并不是数值风洞本身,而是更广泛意义上的实用性、概念、目的和成果。
2 SRVE 的开发 9 2.1 简介和最新技术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.5 统计空间描述符 . ... . ...
Saeed Asadi 1, *,Mohsen Mohammadagha 1,Hajar Kazemi Naeini 1 1 1 1土木工程系,德克萨斯大学阿灵顿分校,德克萨斯州阿灵顿。
摘要:印刷电路板 (PCB) 是重要的模块,被广泛地应用于工业设备和机械,用于控制或信号处理。处于动态环境中的 PCB 可能容易因谐波或随机振动源产生的过多周期性应力而发生故障。因此,对 PCB 及其相关组件的动态行为进行数值建模和预测的能力对于关注 PCB 可靠性的分析师来说是一种有价值的工具。本文使用实验振动分析和有限元法 (FEM) 研究 PCB 谐振行为随电子元件的质量、位置和刚度变化而发生的变化。考虑了稀疏或密集地布满电阻器、晶体管、电容器和集成电路等无处不在的焊接电子元件的电路板。分析表明,对于元件数量较少的电路板,其固有频率与裸 PCB 相比会降低,而焊接元件数量较多的电路板则相应增加。研究表明,焊料的总体效果是降低 PCB 的固有频率,并在较小程度上降低阻尼比。该研究确定了通过适当选择和定位连接元件来调整 PCB 振动响应的潜力。