和放射疗法通常缺乏特异性,往往会在损害癌细胞的同时损害健康细胞,从而导致严重的副作用。相比之下,靶向治疗旨在选择性地将治疗剂递送至癌细胞,而不会损害健康细胞 [2] 。为了实现有效的靶向药物递送,科学家彻底研究了各种纳米载体,包括脂质体、胶束、树枝状聚合物和无机纳米颗粒。由于其独特的品质和适应性,聚合物基纳米颗粒在该行业引起了广泛关注。聚[乳酸-乙醇酸] (PLGA)、聚乙二醇 (PEG) 和聚[乳酸] 等聚合物构成了这些纳米颗粒的大部分 [3] 。它具有生物相容性和可生物降解性。这些聚合物已被证明非常适合靶向癌症
摘要:要治疗慢性疾病或其他严重疾病,经常要求患者长时间服用处方药。但是,对于大多数患者而言,频繁且冗长的剂量时间表通常具有挑战性。长效肠胃外制剂(LAPF)比传统的几种疾病中的传统配方更可取。通过延长药物管理时间的释放,LAPF可以提高患者的依从性,从而增加治疗结果。基于可生物降解的聚合物长效注射制剂,由于其实质性生物利用度,改善封装,受控释放和较小的毒性特征,经常被用作药物输送系统。本综述讨论了各种可生物降解的聚合物,包括PLGA,多丙酮酸,透明质酸和用于长效注射配方的白蛋白,并使用可生物降解的聚合物封装各种药物的工作报告。
小儿脑肿瘤基础仍然致力于改善所有受小儿脑肿瘤影响的儿童的生存和生活质量。在2024年上半年,我们的努力不断增强本报告所详细介绍的工作之外。我们举办了一次以患者为中心的药物开发会议,将患者家庭的声音直接带到了FDA和制药行业,扩大和增加了研究资金,以解决更广泛的小儿脑伯爵型盆栽类型和项目的范围,并推出了新的资源,以支持幸存者在年轻的Adulthood and Beyond逐渐导致幸存者的独特需求。我们庆祝了FDA对第一天生物制药的Ojemda(Tovorafenib)的批准,以及PLGA基金会的开创性家庭的努力,他们提供了研究的重要资金,这些研究资助了研究,这些研究确定了Tovorafenib对PLGG的待遇。,我们继续专注于董事会发展,导致神经外科医生和CNN首席医疗通讯员Sanjay Gupta博士加入了我们的董事会。
简单总结:乳腺癌是女性中最常见的癌症,也是癌症相关死亡的主要原因。尽管有几种治疗方法,但全身化疗仍然是主要选择,尤其是对于晚期乳腺癌的治疗。不幸的是,全身化疗会引起许多副作用和对远端器官的损害,并且需要高剂量的药物才能在肿瘤区域达到治疗浓度。使用纳米系统进行药物输送是一种有希望克服这些缺点的策略。在这项研究中,我们开发了含有化疗药物多西他赛的聚(乳酸-乙醇酸)纳米颗粒 (PLGA-NPs),用环状 RGD 三肽功能化,以允许对乳腺癌中过表达的 α v β 3 整合素进行主动靶向。我们证明 PLGA 在临床前模型中有效地将药物输送到乳腺癌细胞,并且比游离多西他赛更有效地阻止肿瘤进展,同时减少副作用。
摘要:纳米颗粒制剂是一种最近开发的具有增强靶向潜力的药物输送技术。纳米颗粒封装所选药物,并通过位于纳米颗粒表面的靶向分子(例如抗原)将其输送到目标。纳米颗粒甚至可以靶向深层穿透组织,并且可以模拟通过血脑屏障输送药物。这些进步为癌症和阿尔茨海默氏症等疾病提供了更好的靶向性。各种聚合物都可以制成纳米颗粒。本文研究的聚合物是聚己内酯 (PCL)、聚(乳酸) (PLA)、聚(乳酸-共-乙醇酸) (PLGA) 和聚(乙醇酸) (PGA)。本研究的目的是分析这些聚合物的机械性能,以确定药物输送趋势并模拟药代动力学和生物运输。我们发现,一般来说,随着熔点、弹性模量和拉伸强度的增加,降解率也会增加。 PLA复合材料由于其良好的降解控制,可能成为药物输送的理想聚合物。
三阴性乳腺癌 (TNBC) 是一种侵袭性乳腺癌亚型,其特征是缺乏激素受体和 HER2 表达,导致治疗选择有限且患者预后不佳。本研究探索了一种新的治疗方法,即使用装载有 siXBP1 并与表皮生长因子受体 (EGFR) 抗体结合的 PLGA 脂质纳米粒子。这种纳米载体将沉默 XBP1 基因,这对于 TNBC 的进展和生存至关重要,尤其是在缺氧条件下。纳米粒子与 EGFR 抗体的结合提高了它们对 TNBC 细胞的靶向能力,这已通过共聚焦显微镜和流式细胞术证实。靶向纳米粒子的荧光强度比非靶向纳米粒子高 1.45 倍。这些纳米粒子有效地将 siRNA 递送到 TNBC 细胞,导致 XBP1 基因沉默效率显著提高 75%。在缺氧条件下,这种基因沉默效应显著促进了细胞凋亡,与常氧条件相比,细胞凋亡率几乎增加了三倍。这些发现为 TNBC 的靶向治疗提供了宝贵的见解,并为进一步的体内研究铺平了道路,以推动这种方法走向临床应用。
此外,电纺纳米bers具有几个有趣的特征,包括高表面积与体积比。可以通过电源的关键可调节工作参数(包括解决方案,过程和环境因素)的关键可调节工作参数所产生的直径和形状。22 - 24通过仔细调节这些因素,我们可以使用具有理想的物理特征来创建电纺纳米材料,用于高级用途。纳米sca sca o olls具有多种结构特征,已使用许多合成和天然生物聚合物设计。25 – 28 For synthetic polymers, the most commonly used for bone tissue engi- neering, heart gra s, wound dressing, and heart vessel replacement are biodegradable polymers including polylactic acid (PLA), poly-caprolactone (PCL), polyglycolic acid (PGA), polyurethane (PU), copolymer poly(lac-tic- co -glycolide) (PLGA)和聚(l -lactide -co -3-碳酸酯)(PLLA -CL)的共聚物。它们的机械质量(粘弹性和强度)和更快的降解速率使它们比天然聚合物显示出额外的优势。29 - 34
最近,针对性的纳米壳的设计用于癌症化学疗法提供了另一种方法。一方面可以通过使用药物包裹的纳米颗粒来拉长血液循环时间并改善肿瘤药物内疏水性药物的生物利用度。另一方面,它可以通过将药物封装的纳米颗粒与靶向配体连接在一起,从而促进肿瘤药物的递送。5,6 These nanovehicles are o en made from macromo- lecular materials such as poly(lactide- co -glycolide) (PLGA), chi- tosan and poly-hydroxyethyl methacrylate/stearic acid, forming dendrimer, liposomes, 7,8 polymers 9 and inorganic nano- particles.10中的壳聚糖(CS)是通过脱乙酰化获得的阳离子自然多糖,是地球上第二大最丰富的生物聚合物损失。11,12 Cs也被称为有希望的生物材料,因为它的生物降解性,无毒性,生物相容性和免疫性。13 - 15但是,CS的水分溶解度差会限制其在药物输送中的应用。16在我们先前的研究中,低分子量的两亲性寡核酸壳可自我组装成水中的纳米细胞,已合成
4. 材料:脂质、聚合物、金属或陶瓷 5. 靶向配体:抗体、肽或小分子 工程策略 1. 纳米沉淀 2. 乳化 3. 溶剂蒸发 4. 喷雾干燥 5. 逐层组装。 纳米颗粒类型 1. 脂质体 2. 聚合物纳米颗粒 3. 树枝状聚合物 4. 胶束 5. 纳米晶体 设计考虑因素 1. 生物相容性 2. 生物降解性 3. 稳定性 4. 毒性 5. 可扩展性。 应用 1. 靶向药物输送 2. 癌症治疗 3. 基因治疗 4. 疫苗开发 5. 诊断成像。 好处 1. 增强功效 2. 降低毒性 3. 提高生物利用度 4. 提高患者依从性 5. 个性化医疗。 B) 新材料与新技术 新材料 1. 脂质(例如脂质体) 2. 聚合物(例如 PLGA、PEG) 3. 金属(例如金、银) 4. 陶瓷(例如二氧化硅) 5. 碳基材料(例如石墨烯、纳米管) 6. 树枝状聚合物 7. 胶束 8. 纳米晶体。 新兴技术 1. 纳米沉淀 2. 乳化 3. 溶剂蒸发 4. 喷雾干燥 5. 逐层组装 6. 3D 打印 7. 纳米机器人 8. 纳米传感器。
摘要:动脉粥样硬化相关冠状动脉疾病 (CAD) 是全球死亡率和发病率的主要原因。这需要有效的一级和二级预防,以减少与 CAD 相关的并发症;病理的消退或稳定仍然是治疗的主要手段。他汀类药物已被证明是减少副作用的最有效治疗方法,但由于缺乏与靶标相关的分子特异性,在给药和达到有效剂量以及副作用方面存在局限性。实施的技术步骤是用于他汀类药物给药的聚合物和纳米颗粒,因为已经看到药物输送系统 (DDS) 与他汀类药物的结合如何通过绕过肝肾过滤器来提高生物利用度并增加相关的靶标特异性,增强其作用并减少副作用。内皮功能障碍减少、内膜增生减少、缺血再灌注损伤减少、心脏再生、细胞外基质正向重塑、新内膜生长减少和内皮再造增加都是他汀类药物与 DDS 结合后增强的药物相关效应。最近的临床前研究表明他汀类药物如何刺激内源性心脏干细胞分化。聚乳酸-乙醇酸共聚物 (PLGA) 似乎是最有前途的 DDS,因为它比其他 DDS 更能增强结合药物的效果。本综述旨在总结目前关于他汀类药物在心血管疾病领域输送的聚合物和纳米颗粒的证据,试图阐明这一主题并为未来的研究确定新的途径。