摘要:本文介绍了一种低电流消耗的全 MOSFET 直流电压限制器。在所提出的电压参考结构中,为了降低功耗,晶体管偏置在亚阈值区域。为了在电压参考电路中产生与绝对温度互补 (CTAT) 电压,仅使用 PMOS 晶体管,其漏极、栅极和源极端子连接在一起并充当二极管,以减少布局面积占用。为了进一步降低功耗,采样电路将整流器输出电压的一部分与参考电压进行比较。此外,四级反相器用作缓冲器,以提供更接近理想情况的 IV 限制特性。在第一个反相器中使用串联传输门晶体管也尽可能降低了功耗。
主要目标 • 提供培训和教育,以增加对 BES 合同载体的了解,并成功地向 AF 社区推销您的能力 • 主办和参加每月、每季度和每年的小型企业活动(即:配对、行业日、研讨会、讲习班等) • 提高对小型企业能力及其对 AF 社区贡献的认识 • 应小型企业的要求进行一对一咨询会议,指导他们如何最好地寻求联邦机会并解决他们可能面临的具体问题和挑战 • 与内部和外部受众沟通,倡导小型企业及其为 AF 使命带来的能力 • 审查和批准 PMO 提交的内部收购策略,确保小型企业的包容性和最大限度地参与采购机会、合同、分包、任务订单等。
设计并实现了一款 4 位二进制加权电流控制 DAC,该 DAC 采用了适合生物医学应用的各种开关方法。虽然这种架构占用的数字面积和功率较小,但容易出现故障,尤其是在输入转换次数较多时。作者计算了具有各种开关的 4 位二进制电流控制 DAC 的 INL 和 DNL:NMOS、PMOS 和传输门 [9, 12]。DAC 的评估基于各种参数,如分辨率、功耗、稳定时间、动态范围、非线性误差 (INL 和 DNL)。本文重点介绍 INL 和 DNL。差分非线性(缩写 DNL)表示实际步长相对于理想步长的偏差,其中步长是相邻输入值的模拟输出差 [6, 10]。DAC 的 DNL 在数学上表示如下:
1. 数字系统基础:布尔代数、数字系统中使用的数字系统和代码、逻辑门及其特性、真值表。2. 组合电路的分析与综合:简化技术、无关项、卡诺图。大规模电路的实现。静态和动态风险。3. 数字集成电路:数字 IC 系列:TTL、CMOS、基本逻辑门结构(TTL、CMOS、NMOS、PMOS、传输门逻辑、线与逻辑)、输入和输出 VI 特性;传输特性、开关阈值、噪声容限、逻辑门的功率耗散、传播延迟、上升时间、下降时间。时序电路:触发器的典型结构、操作、设计和应用。同步时序电路的设计和分析;状态和状态变量:寄存器、计数器和存储器单元(ROM、RAM、Flash、可编程逻辑阵列、FPGA)的结构。异步电路的设计、状态机、流表、稳定和非稳定状态。
CMOS电路,寄生电容,MOS缩放技术,闩锁,匹配问题,布局中常见的质心几何形状。用于逻辑,算术和顺序块设计的数字电路设计样式;使用逻辑工作的设备尺寸;定时问题(时钟偏斜和抖动)和时钟分布技术;能源消耗的估计和最小化;功率延迟权衡,互连建模;内存体系结构,内存电路设计,感官放大器;集成电路测试的概述。基本和级联的NMOS/PMOS/CMOS增益阶段,差分放大器以及高级OPAMP设计,设备的匹配,错配分析,CMRR,PSRR和SLEW速率问题,偏移电压,高级电流镜;电流和电压参考设计,共同模式反馈电路,频率响应,稳定性和噪声问题;频率补偿技术。
敏感节点对之间的电荷共享。当入射离子撞击敏感晶体管(例如节点 mn2 中的 PMOS 晶体管)时,一列电子-空穴对会沿入射轨道电离。电离载流子扩散到相邻的晶体管,导致相邻敏感节点之间的电荷收集,如图 3 所示。对于传统的 DICE 触发器,敏感节点对将收集足够的电荷并导致 SEU。对于所提出的 MSIFF,增加的节点间距可有效减少由于复合过程引起的扩散收集。此外,从属锁存器的插入组件也有助于收集额外的载流子 [19]。它将显著降低电离载流子密度并阻止扩散收集过程。因此,敏感节点对不会同时收集足够的电荷,并且所提出的 MSIFF 中不会发生 SEU。
本研究报告了一种面积高效、无电感、低噪声 CMOS 跨阻放大器的设计,适用于入门级光时域反射仪。本研究提出了一种新方法,用于在电容反馈 TIA 中实现可编程增益,使用输入级偏置阻抗和其中一个反馈电容器独立调整低频和高频行为。该方法解决了快速前馈或电阻反馈拓扑的典型噪声问题,同时缓解了关键 TIA 性能指标的权衡。提出了一种更精确的放大器模型,该模型考虑了电容隔离和两个偏置电路的影响。建议对参考设计进行进一步修改,包括基于 PMOS 的偏置电路实现,以解决电压余量问题。该电路采用标准 180 nm CMOS 工艺实现,采用 1.8 V 电源供电,电流为 11.7 mA。
主要表现在速度和功耗上。非线性误差 - 积分非线性 (INL) 和差分非线性 (DNL) 是 DAC 的重要指标之一,对医疗领域专用 DAC 的性能影响巨大。INL 和 DNL 的数量取决于架构类型,例如二进制加权、一元加权或分段 DAC。开关类型对 INL 和 DNL 也有很大影响。本文介绍了使用各种开关(如 NMOS、PMOS、传输门和差分开关)的分段 DAC 的设计和实现。与二进制加权 DAC 相比,分段概念在减少毛刺方面具有优势。进行比较后发现,使用差分开关的 DAC 的结果在输出步长均匀方面具有优势。最终产生了更好的 INL 和 DNL。为了模拟设计,使用了采用 180 nm MOS 技术的 cadence virtuoso 工具。
Sige合金数十年来引起了很多兴趣,尤其是在微电子行业中。如今,它们已在许多设备中使用。的确,由于GE [1]中的较高的孔迁移率和相对较小的晶格参数差异,因此它们与硅设备的兼容性使得能够设计出诸如应变,载流子迁移率和带盖之类的特性。一个人可以使用sige:b源和排水量来压缩PMOS通道,从而改善其电气性能[2]。但是,设备的连续微型化需要形成越来越浅的源/排水(S/d)连接,但具有高掺杂剂激活。因此,退火过程时间尺度变短且较短[3,4]。纳秒激光退火(NLA)可以达到SI [5-7]或GE [8,9]中的较高掺杂剂的激活。紫外线NLA(UV-NLA)也可以用于3D整合,因为其短脉冲持续时间及其短波长导致表面附近的高退化温度,同时将嵌入式层保持在较低的温度下[10-13]。
摘要 —本文介绍了一种由工作在亚阈值区域的串联 PMOS 器件组成的新策略和电路配置,用于实现极低频有源 RC 滤波器和生物放大器所需的超高值电阻器。根据应用不同,例如生物放大器中的信号带宽可能从几 mHz 到最高 10 kHz 不等。提出了三种不同的电阻结构来实现超高阻值。虽然提出的超高阻值伪电阻器的阻值在几 T Ω 的数量级,但它们占用的片上硅片面积很小,这是超低功耗可植入生物医学微系统中模拟前端电路设计的主要问题之一。此外,这些超高阻值电阻器导致使用小电容来产生非常小的截止频率。因此,实现电容所需的大面积也大大减少。所提出的电阻结构在宽输入电压范围(-0.5 V~+0.5 V)内变化很小,约为7%和12%,从而显著改善了生物放大器的总谐波失真和系统的模拟前端。在180nm CMOS工艺中设计的不同电路的仿真结果证明了所提出的超高阻值伪电阻的优势。