因突变或翻译后修饰 (PTM) 而产生的替代蛋白质-蛋白质相互作用 (PPI),称为表型转换 (PS),对于替代致病信号的传递至关重要,在癌症中尤其重要。近年来,PPI 已成为合理药物设计的有希望的靶标,主要是因为它们的高特异性有助于靶向与疾病相关的信号通路。然而,在分子水平上存在障碍,这些障碍源于相互作用界面的性质以及小分子药物与多个裂隙表面相互作用的倾向。难以识别可作为激活剂或抑制剂来抵消突变的生物学效应的小分子,这引发了以前从未遇到过的问题。例如,小分子可以紧密结合,但可能不能作为药物或结合到多个位点(相互作用混乱)。另一个原因是蛋白质表面没有明显的裂隙;如果存在口袋,它可能太小,或者其几何形状可能阻碍结合。 PS 源自致癌(替代)信号传导,可导致耐药性并构成肿瘤系统稳定性的基础。本综述研究了与靶向药物设计和开发相关的 PPI 界面特性。此外,还讨论了用作药物的三种酪氨酸激酶抑制剂 (TKI) 之间的相互作用。最后,通过计算机模拟确定了其中一种药物的潜在新靶点。
随着从头开始发展深度学习(DL)模型的规模和成本继续上升,工程师越来越多地转向将开源预培训模型(PTMS)作为一种具有成本效益的替代品[30]。PTM注册机构通过提供包括预培训的权重,配置和文档的软件包来促进开源模型的重复使用[28]。拥抱面已成为PROMENT PTM注册表,与NPM和PYPI等传统软件注册机构的普及相当[28]。了解PTM注册表的特征,例如拥抱面孔是支持在这种新兴环境下有效和有效的软件重用的关键。先前的研究在将PTM注册机构与传统软件包注册表进行比较方面取得了长足的进步,并提出了诸如碳排放,模型选择和漏洞之类的问题[14,28,32]。但是,没有系统的文献综述描述了当前知识的状态。此类评论通过提供研究议程来推进该领域。我们的研究以三种方式做出了贡献。首先,我们对PTM注册表的知识进行了首次系统评价。第二,我们提出了现有定性见解的定量指标,从而对现有关于PTM注册表的现有索赔进行了更强大的验证。最后,我们通过定量分析来验证或挑战以前的定性见解。如图1所示,我们的方法有两个部分。首先,我们进行了系统的文献综述(SLR),以提取有关拥抱面孔的现有知识(索赔)。第二,我们确定未量化和量化较低的索赔,并使用现有数据集提供指标和测量。我们的SLR提取了关于拥抱面的12个不同主张,其中4个缺乏大规模的定量证据。定义指标后,我们以大规模的方式支持其中2个;和
随着从头开始发展深度学习(DL)模型的规模和成本继续上升,工程师越来越多地转向将开源预培训模型(PTMS)作为一种具有成本效益的替代品[30]。PTM注册机构通过提供包括预培训的权重,配置和文档的软件包来促进开源模型的重复使用[28]。拥抱面已成为PROMENT PTM注册表,与NPM和PYPI等传统软件注册机构的普及相当[28]。了解PTM注册表的特征,例如拥抱面孔是支持在这种新兴环境下有效和有效的软件重用的关键。先前的研究在将PTM注册机构与传统软件包注册表进行比较方面取得了长足的进步,并提出了诸如碳排放,模型选择和漏洞之类的问题[14,28,32]。但是,没有系统的文献综述描述了当前知识的状态。此类评论通过提供研究议程来推进该领域。我们的研究以三种方式做出了贡献。首先,我们对PTM注册表的知识进行了首次系统评价。第二,我们提出了现有定性见解的定量指标,从而对现有关于PTM注册表的现有索赔进行了更强大的验证。最后,我们通过定量分析来验证或挑战以前的定性见解。如图1所示,我们的方法有两个部分。首先,我们进行了系统的文献综述(SLR),以提取有关拥抱面孔的现有知识(索赔)。第二,我们确定未量化和量化较低的索赔,并使用现有数据集提供指标和测量。我们的SLR提取了关于拥抱面的12个不同主张,其中4个缺乏大规模的定量证据。定义指标后,我们以大规模的方式支持其中2个;和
引言乳腺癌(BC)是最常见的癌症,与全球女性最与癌症相关的死亡人数最多。bc发生在青春期后的所有年龄段的女性中。在2022年,有230万妇女被诊断出患有卑诗省的妇女,在全球范围内造成约670,000人死亡1。尽管在早期检测和治疗BC方面取得了进展,但转移,但显着使治疗复杂化,并且仍然是癌症相关死亡的主要原因2,3。转移是指癌细胞从原发性肿瘤部位扩散以在不同解剖部位建立的过程2。这些扩散的细胞很难治疗,快速生长,并且会导致在转移部位4的器官衰竭。因此,了解驱动BC转移的详细分子机制对于制定更有效的治疗干预措施至关重要。α-微管蛋白的乙酰化是一种与BC进展和转移3,5-7相关的机制。 这是一种翻译后修饰(PTM),通常发生在α-微管蛋白的赖氨酸40上,这是一种与β-微管蛋白二聚体的关键蛋白。 这些异二聚体是在5,8细胞中形成微管(MTS)聚合以形成微管(MTS)的构件。 PTM,例如乙酰化和驱虫率与癌症的细胞转化有关9。 例如,α-微管蛋白的乙酰化已被证明可以增强细胞的附着,迁移和重新分析,从而为转移势7提供选择性优势7。α-微管蛋白的乙酰化是一种与BC进展和转移3,5-7相关的机制。这是一种翻译后修饰(PTM),通常发生在α-微管蛋白的赖氨酸40上,这是一种与β-微管蛋白二聚体的关键蛋白。这些异二聚体是在5,8细胞中形成微管(MTS)聚合以形成微管(MTS)的构件。PTM,例如乙酰化和驱虫率与癌症的细胞转化有关9。例如,α-微管蛋白的乙酰化已被证明可以增强细胞的附着,迁移和重新分析,从而为转移势7提供选择性优势7。这些修饰通常与癌症的结果不良和增强的转移能力相关,这为将其定为潜在治疗剂的基本原理7,9。该新闻通讯将探讨α-微管蛋白乙酰化在BC转移中的作用,其生物学意义及其治疗潜力。
乳腺癌 (BC) 是最常见的非皮肤癌,也是美国女性癌症死亡的第二大原因。乳腺癌的发生和发展可以通过遗传和表观遗传变化的积累来进行,这些变化使转化细胞能够逃脱正常的细胞周期检查点控制。与核苷酸突变不同,DNA 甲基化、组蛋白翻译后修饰 (PTM)、核小体重塑和非编码 RNA 等表观遗传变化通常是可逆的,因此可能对药物干预有反应。表观遗传失调是抗肿瘤免疫力受损、免疫监视逃避和免疫疗法耐药的关键机制。与黑色素瘤或肺癌等高度免疫原性的肿瘤类型相比,乳腺癌被视为免疫静止肿瘤,其肿瘤浸润淋巴细胞 (TIL) 数量相对较少、肿瘤突变负荷 (TMB) 较低,对免疫检查点抑制剂 (ICI) 的反应率适中。新兴证据表明,针对异常表观遗传修饰因子的药物可能通过几种相互关联的机制增强 BC 中的宿主抗肿瘤免疫力,例如增强肿瘤抗原呈递、激活细胞毒性 T 细胞、抑制免疫抑制细胞、增强对 ICI 的反应以及诱导免疫原性细胞死亡 (ICD)。这些发现为使用表观遗传药物与免疫疗法的组合方法作为改善 BC 患者预后的创新范例奠定了非常有希望的基础。在这篇综述中,我们总结了目前对表观遗传修饰因子如何发挥作用的理解
解码蛋白质过硫化信号生命最初在富含硫化氢 (H2S) 的环境中出现和繁荣,过去十年发表的文献开始认识到 H2S 是许多生理和病理过程的介质。接触 H2S 会使动物进入类似假死的状态,而饮食限制导致的寿命延长则是 H2S 积累的结果。其产生障碍与神经退行性疾病和癌症等许多疾病的发展有关。一种称为蛋白质过硫化的半胱氨酸残基的新型翻译后修饰 (PTM)(即将半胱氨酸残基 PSH 转化为过硫化物,PSSH)被认为是所有这些效应背后的统一机制。因此,了解蛋白质过硫化不仅具有基础潜力,例如揭示新的信号通路,而且具有对抗衰老和疾病的药理学潜力。然而,H2S 介导的 PSSH 形成的潜在机制仍不清楚,主要是因为缺乏可靠且有选择性的 PSSH 标记方法。在这里,使用我们团队开发的尖端 PSSH 标记方法,结合蛋白质组学、代谢组学和分子生物学,并通过研究不同的模型系统(细胞、秀丽隐杆线虫、啮齿动物),我们打算 (i) 获得有关 PSSH 动力学的高分辨率结构、功能、定量和时空信息,并将这种进化定位为
遗传和表观遗传调控生物标记在植物抗逆分子机制和作物育种方法中起着至关重要的作用。由于不利的生长条件阻碍了作物产量和全球粮食安全,养活不断增长的全球人口是一项艰巨的任务。为了很好地解开上述机制,科学家们不得不整合多个植物研究领域,因此,他们必须具备丰富的生物信息学知识和工具来管理大数据集。从本质上讲,本主题中包含的常规文章涉及农民和股东面临的现代问题。为了解决这些问题,科学家们采用了多方面的研究方法,涵盖植物生理学、分子生物学、遗传学、表观遗传学和组学等各个领域,以及最先进的植物科学和尖端方法,这些方法由复杂的技术和先进的方法提供支持,包括全基因组关联研究 (GWAS) 和表观遗传学方法,以揭示植物对高温、盐分、干旱和病原体侵袭等胁迫(生物和非生物)的耐受机制。因此,可以将进化的分子技术投入到未来的作物育种策略中,以提高生产力并产生更能抵御环境挑战和抵抗病原体侵袭的新品种。值得注意的是,Kumar 等人通过两种不同的方法揭示了遗传可塑性的分子基础对水稻种植中不同环境条件的关键重要性。本专题汇集了新发现和有用方法来促进植物科学研究。它阐明了表观遗传学变化(例如 DNA 甲基化、组蛋白(去)乙酰化和其他翻译后修饰 (PTM))在基因调控(抑制或诱导)中的作用,以及组学(基因组学、表观基因组学、转录组学、代谢组学、离子组学和蛋白质组学)在检测应激反应基因中的作用。使用
神经退行性疾病(NDS)的特征是大脑神经元或脊髓神经元异常,逐渐失去功能,最终导致细胞死亡。在检查受影响的组织后,病理变化显示突触丧失,错误折叠的蛋白质和免疫细胞的激活(这都表明疾病进展),此前严重的临床症状变得明显。早期检测NDS对于可能延迟疾病进展的有针对性药物至关重要。 鉴于其复杂的病理生理特征和各种临床症状,因此需要对NDS进行敏感有效的诊断方法。 生物标志物(如microRNA(miRNA))已被确定为检测这些疾病的潜在工具。 我们探讨了miRNA在NDS背景下的关键作用,重点是阿尔茨海默氏病,帕金森氏病,多发性硬化症,亨廷顿氏病和肌萎缩性侧面硬化症。 评论深入研究了衰老与ND之间的复杂关系,突出了大脑衰老的结构和功能改变及其对疾病发展的影响。 它阐明了miRNA和RNA结合蛋白如何与ND的发病机理有关,并强调了研究其在衰老中的表达和功能的重要性。 显着,miRNA对翻译后修饰(PTM)产生了重大影响,不仅影响神经系统,还影响多种组织和细胞类型。 我们讨论miRNA,PTM和NDS之间的联系。早期检测NDS对于可能延迟疾病进展的有针对性药物至关重要。鉴于其复杂的病理生理特征和各种临床症状,因此需要对NDS进行敏感有效的诊断方法。生物标志物(如microRNA(miRNA))已被确定为检测这些疾病的潜在工具。我们探讨了miRNA在NDS背景下的关键作用,重点是阿尔茨海默氏病,帕金森氏病,多发性硬化症,亨廷顿氏病和肌萎缩性侧面硬化症。评论深入研究了衰老与ND之间的复杂关系,突出了大脑衰老的结构和功能改变及其对疾病发展的影响。它阐明了miRNA和RNA结合蛋白如何与ND的发病机理有关,并强调了研究其在衰老中的表达和功能的重要性。显着,miRNA对翻译后修饰(PTM)产生了重大影响,不仅影响神经系统,还影响多种组织和细胞类型。我们讨论miRNA,PTM和NDS之间的联系。特定的miRNA被发现靶向涉及泛素化或去泛素化过程的蛋白质,这些蛋白质在调节蛋白质功能和稳定性中起着重要作用。此外,审查还讨论了miRNA作为早期疾病检测的生物标志物的意义,从而提供了对诊断策略的见解。
蛋白质会经历无数种化学修饰,这些修饰会调节其结构、稳定性、功能和与其他分子的相互作用,从而为生物系统增加巨大的复杂性和调节范围。此类翻译后修饰 (PTM) 可由细胞刺激或应激引发,并启动下游反应,使细胞适应其环境并介导增殖、分化和死亡等变化。瓜氨酸可以存在于蛋白质中,这是精氨酸残基的翻译后修饰的结果,称为肽精氨酸脱亚胺化或瓜氨酸化。由于瓜氨酸是一种非编码氨基酸,因此它在蛋白质中的存在表示刺激和反应。尽管瓜氨酸化早在 20 世纪 60 年代就被首次证实 [1],第一种瓜氨酸化酶肽酰精氨酸脱亚胺酶 (PADI 或 PAD) 也在 20 世纪 80 年代初被分离出来 [2],但仍有越来越多的细胞活动和病理被证明受到瓜氨酸化的影响,并且在过去 15 - 20 年间取得了长足的进步。现在人们了解到,由五种 PADI 酶组成的小家族具有多种生理和病理生理功能(详见 [3]),但是,我们仍然缺乏对细胞内 PADI 调控机制原理以及它们发挥细胞和生物体功能的机制的基本了解。我们对瓜氨酸化的理解源自许多不同的领域,包括神经生物学、免疫学、生殖生物学、皮肤生理学、细胞信号传导、染色质生物学和转录,以及自身免疫、神经退行性疾病和癌症。尽管 PADI 的调节范围显然很广,但这些酶表现出高度的序列和结构保守性,这表明某些机制原理可能适用于不同同工酶的调节。此外,分析方法学的最新进展,例如靶向质谱和调节 PADI 功能的化学生物学努力,可能适用于许多不同的生物系统。因此,显然需要一个论坛,让来自瓜氨酸化研究不同方面的科学家聚集在一起,讨论他们的工作并交流想法,以促进该领域的进步。因此,第一届蛋白质瓜氨酸化国际会议于 2022 年 10 月在英国举行,得到了皇家学会的慷慨支持(https://royalsociety.org/science-events-and-lectures/2022/10/protein-citrullination/)。本次讨论会聚集了细胞和发育生物学、细胞信号传导、基因转录、癌症生物学和自身免疫领域的科学家,同时还结合了质谱和药理学领域的顶尖专家的重要演讲。本期专题紧随此次会议,报道了与会者的最新研究成果,包括九篇研究论文和六篇评论文章,涵盖了广泛的主题。在本简介中,我们总结了本期所介绍的进展,其中包括对已建立的 PADI 功能的新机制理解和瓜氨酸化生物学中出现的新主题。