铜是人类[1,2],植物[3-5],脊椎动物和无脊椎动物[6]的必不可少的痕量元件,并且存在于无数蛋白质和酶的不同活性位点[7-11]。在此类生物系统中,铜酶发挥了诸如氧气摄取和运输等功能。呼吸链中的电子转移;许多底物的催化氧化或还原;抗氧化作用;金属离子的吸收,运输和存储等。[12,13]。从结构上讲,铜化合物以许多构型出现,并以简单的配体或生物分子协调,以广泛的排列[14]。生物系统中存在的铜,Cu +和Cu 2+的两个共同氧化态表现出具有奇特的特性,具有一系列的反应性和核性,形成了单,BI-,BI-,多核,甚至簇种。铜的蛋白质可能具有一个或多个具有不同光谱特征和不同活性的金属离子中心[15]。另一方面,铜离子也参与神经退行性疾病,其中其氧化还原特性起着重要作用[16-22]。考虑到上述铜的不同生物学作用,新的含铜配位配合物的发展是一个强烈的研究主题,涉及探索其药理特性,尤其是其抗癌活性[23 - 31]。在大多数已发表的文章中都报道了潜在的抗癌药。Batista和Coll。Batista和Coll。因此,铜的生物无机化学构成了一个丰富而具有挑战性的调查领域,吸引了世界各地研究小组的关注和兴趣,这表明,通过使用铜结合使用第二个关键词,在文献搜索中发现的大量文件证明了抗菌,抗癌,抗癌,催化剂,mimics,mimics,spectry,specter,spectry,spectry,spectry,spectry,spectry,spectry,spectry,spectry,spectry,spectr <This diversity is clearly demonstrated in this Special Issue of Inorganics, ‘Bioinor- ganic Chemistry of Copper', which contains 14 published articles that explore topics such as antiproliferative studies, anticancer agents, anti-inflammatory compounds, potential radioactive imaging diagnosis agents, reactive species related to amyloid peptides, antipar- asitic activity, catalytic oxidative activity, and蛋白质模仿。A re- view about mixed chelate homoleptic or heteroleptic copper(II) complexes, known as Casiope í nas ® and already used in clinical tests, was provided by Ruiz-Azuara and co- workers (contribution 1), describing translational medicine criteria to establish a normative process for new drug development.(贡献2)分离并表征了一系列Cu(I) / PPH 3 / Naphtoquinone络合物,具有针对多种肿瘤细胞的抗癌特性。它们的作用方式还涉及无活性氧(ROS)产生,无论是在没有(过氧基本)和辐照(羟基自由基)的情况下。
Tolebrutinib 455.5 2.69 2.53 1 92.0 6.55 4.73 Ibrutinib 440.5 2.92 2.92 1 99.2 3.95 4.41 Evobrutinib 429.5 3.19 3.19 2 93.4 6.42 4.20 Fenebrutinib 664.8 1.59 1.57 2 119.3 7.55 3.52 BIIB 091 542.6 0.20 0.19 2 127.9 6.75 3.50 remibrutinib 507.5 3.29 3.29 2 110.4 5.65 3.03表1。结构活性关系预测了CNS的渗透率。多个参数
背景:Annao Pingchong汤(ANPCD)是一种传统的中国汤剂,对通过临床和实验研究验证的脑出血(ICH)具有明确的影响。然而,ICH后ANPCD对氧化应激(O)的影响尚不清楚,值得进一步研究。目的:研究ANPCD对ICH的治疗作用是否与减轻OS损伤有关,并寻求潜在的抗氧化作用靶标。材料和方法:通过比较ANPCD的靶基因,ICH和差异表达基因的靶基因(DEGS),鉴定了ICH上ANPCD的治疗性候选基因。蛋白质 - 蛋白质相互作用(PPI)网络分析和功能富集分析与目标相关文献结合使用,以选择合适的抗氧化剂靶标。使用大分子对接验证了ANPCD和所选目标之间的亲和力。随后,通过体内实验进一步研究了ANPCD对OS和所选靶标的影响。结果:筛选了48个候选基因,其中无声信息调节剂SIRTUIN 1(SIRT1)是具有抗氧化作用的核心基因之一,并且ICH显着影响其表达。大分子对接也证明了6种ANPCD和SIRT1的6种化合物之间的良好亲和力。此外,ANPCD显着降低了凋亡率和与凋亡相关蛋白的表达(p53,细胞色素C和caspase-3)。结论:ANPCD减轻了大鼠ICH后的OS损伤和凋亡。体内实验的结果表明,ANPCD显着降低了修饰的神经系统严重程度评分(MNSS)评分(MNSS)和血清MDA和8-OHDG含量,而血清SOD和CAT活性显着增加,与SIRT1,FOXO1,FOXO1,PGC-1 ANPCD上的上调有关,使ANPCD的上调变得复杂。作为潜在的治疗靶标,SIRT1可以像ANPCD一样有效调节其下游蛋白。关键字:脑内出血,Annao Pingchong汤,氧化应激,网络药理学,体内实验,SIRT1
指南中的建议适用于从临床前开发到临床开发的各个阶段:临床前评估和早期临床研究中收集的信息和数据将为 ADC 开发项目后期的开发策略和研究设计提供参考。例如,使用药物代谢酶和转运蛋白相关检测对未结合有效载荷进行体外 DDI 风险评估将为体内 DDI 研究的必要性和设计提供参考。临床前和早期临床研究中未结合有效载荷的吸收、分布、代谢和排泄信息将为是否应在关键研究或专门研究中评估器官损伤提供参考。
本指南专门概述了开发的临床药理学考虑22个针对新药申请(NDA)(NDA)的拟议肽药物的22条计划,该计划根据《联邦食品,药物和化妆品法案》(FD&C法案)的第23条第23条(b)条,并在适当的情况下参考其他24个相关指南。就本指南而言,术语肽一词是指25种由40或更少的氨基酸组成的任何聚合物。2总的来说,如果肽符合药物的定义26,否则不符合“生物产品” 3或27“设备”的法定定义,4它将根据《 FD&C法案》作为药物监管,并根据《 FD&C Act''的所有“药物” 28要求,包括FD和FDA法规,包括新的29级药物,包括该法规,包括新的29级药物。在30个州际贸易中销售。5然而,肽药物可以具有5月31日在某些方面与生物产品相似的产品特性,因此,该指南包括32个对其他FDA生物产品指南的参考,这些指南讨论了33个也可以适用于肽药物的科学原理。34
沙利度胺及其衍生物是强效的癌症治疗药物,也是最容易理解的分子胶降解剂 (MGD) 之一。这些药物选择性地重新编程 E3 泛素连接酶 cereblon (CRBN),使靶蛋白被泛素-蛋白酶体系统降解。MGD 在 E3 连接酶表面产生新的识别界面,参与诱导的蛋白质-蛋白质与新底物的相互作用。对其作用机制的分子洞察为通过特定的识别基序 G 环与大量靶标进行接触提供了令人兴奋的机会。我们的分析表明,目前基于 CRBN 的 MGD 原则上可以识别人类蛋白质组中超过 2,500 种包含 G 环的蛋白质。我们回顾了在调整 CRBN 与其 MGD 诱导的新底物之间的特异性方面的最新进展,并推断出一组控制这些相互作用的简单规则。我们得出结论,合理的 MGD 设计工作将能够选择性降解更多的蛋白质,从而将这种治疗方式扩展到更多的疾病领域。
多巴胺 (DA) 神经元活动和信号传导在调节控制各种行为输出的大脑回路中起着至关重要的作用,包括(但不限于)动机、运动控制、奖励处理和认知 (1–3)。中脑 DA 神经元大致可细分为两个主要核,即黑质致密部 (SNc) 和腹侧被盖区 (VTA)。SNc 的 DA 神经元投射到背侧纹状体 (DS),而 VTA 的 DA 神经元投射到伏隔核 (NAc) 和皮质区域 (4)。此外,DS 和 NAc 可进一步细分为具有不同皮质和丘脑输入的解剖区域。例如,外侧 DS 接收来自运动皮质的大量输入,并大量参与运动学习、习惯行为和动作选择 (5–9)。相比之下,内侧 DS 接收来自体感皮层的输入,可以在塑造目标导向行为、强迫行为和技能学习方面发挥关键作用(10-12)。同样,NAc 可以细分为核心和外壳区域,具有不同的投射模式和输入,与动机行为、显着性和奖励处理有关(13-15)。DA 能够调节如此广泛和多样化的行为输出,至少部分归因于 DA 神经元亚群整合到仅涉及这些行为结果的子集的大脑回路中。与 DA 在调节这些回路中的关键作用一致,DA 信号失调被认为在许多疾病中起着关键作用,包括精神分裂症、抑郁症、物质使用障碍和帕金森病。
随着医学进入人工智能 (AI) 和数字健康时代,数据分析在医疗保健领域变得越来越重要。每位患者都有丰富的健康数据,包括来自电子健康记录 (EHR) (1)、个人可穿戴设备和远程监控以及基因组测序和成像等大数据分析的信息 (2)。计算能力也在不断发展,以满足这些新数据流的需求,包括更快、更强大的计算机和分析算法。人工智能和深度学习等新技术使我们能够利用这些新数据来改进医疗创新、个性化医疗和医疗保健服务。物联网 (IoT) 可穿戴设备,如智能手表、戒指和臂章,以及捕捉情绪、卡路里消耗和身体活动数据的自我跟踪工具,为实时更新数字孪生提供了连续的数据流 (3)。在此背景下,健康数字孪生 (HDT) 是一种分析多因素患者数据以改善患者结果和人口健康的新模型。
1。Kumbhani D,BhattD。对西罗莫司洗脱与依依他莫木斯的支架试验的随机评估。ACC。 2019 2。 Feres F,Costa RA,Abizaid A,Leon MB,Marin-Neto JA,Botelho RV等。 Zotarolimus洗脱支架后三个与十二个月的双重抗血小板治疗:优化的随机试验。 JAMA。 2013; 310(23):2510-2522。 3。 Colombo A,Chieffo A,Frasheri A,Garbo R,Masotti-Centol M,Salvatella N等。 第二代药物洗脱支架植入,然后进行6个月的12个月双抗血小板治疗:安全随机临床试验。 J Am Coll Cardiol。 2014; 64(20):2086-2097。 4。 Fensterl V,Sen GC。 干扰素和病毒感染。 生物活性剂。 2009; 35(1):14-20。 5。 弗里德曼RM。 干扰素的临床用途。 br J Clin Pharmacol。 2008; 65(2):158-162。 6。 George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。 干扰素的药理学和治疗潜力。 Pharmacol Ther。 2012; 135(1):44-53。 7。 Geraghty RJ,Capes-Davis A,Davis JM。 在生物医学研究中使用细胞系的指南。 br j癌。 2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。ACC。2019 2。Feres F,Costa RA,Abizaid A,Leon MB,Marin-Neto JA,Botelho RV等。Zotarolimus洗脱支架后三个与十二个月的双重抗血小板治疗:优化的随机试验。JAMA。 2013; 310(23):2510-2522。 3。 Colombo A,Chieffo A,Frasheri A,Garbo R,Masotti-Centol M,Salvatella N等。 第二代药物洗脱支架植入,然后进行6个月的12个月双抗血小板治疗:安全随机临床试验。 J Am Coll Cardiol。 2014; 64(20):2086-2097。 4。 Fensterl V,Sen GC。 干扰素和病毒感染。 生物活性剂。 2009; 35(1):14-20。 5。 弗里德曼RM。 干扰素的临床用途。 br J Clin Pharmacol。 2008; 65(2):158-162。 6。 George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。 干扰素的药理学和治疗潜力。 Pharmacol Ther。 2012; 135(1):44-53。 7。 Geraghty RJ,Capes-Davis A,Davis JM。 在生物医学研究中使用细胞系的指南。 br j癌。 2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。JAMA。2013; 310(23):2510-2522。3。Colombo A,Chieffo A,Frasheri A,Garbo R,Masotti-Centol M,Salvatella N等。第二代药物洗脱支架植入,然后进行6个月的12个月双抗血小板治疗:安全随机临床试验。J Am Coll Cardiol。2014; 64(20):2086-2097。4。Fensterl V,Sen GC。干扰素和病毒感染。生物活性剂。2009; 35(1):14-20。 5。 弗里德曼RM。 干扰素的临床用途。 br J Clin Pharmacol。 2008; 65(2):158-162。 6。 George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。 干扰素的药理学和治疗潜力。 Pharmacol Ther。 2012; 135(1):44-53。 7。 Geraghty RJ,Capes-Davis A,Davis JM。 在生物医学研究中使用细胞系的指南。 br j癌。 2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。2009; 35(1):14-20。5。弗里德曼RM。干扰素的临床用途。br J Clin Pharmacol。2008; 65(2):158-162。 6。 George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。 干扰素的药理学和治疗潜力。 Pharmacol Ther。 2012; 135(1):44-53。 7。 Geraghty RJ,Capes-Davis A,Davis JM。 在生物医学研究中使用细胞系的指南。 br j癌。 2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。2008; 65(2):158-162。6。George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。 干扰素的药理学和治疗潜力。 Pharmacol Ther。 2012; 135(1):44-53。 7。 Geraghty RJ,Capes-Davis A,Davis JM。 在生物医学研究中使用细胞系的指南。 br j癌。 2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。干扰素的药理学和治疗潜力。Pharmacol Ther。2012; 135(1):44-53。7。Geraghty RJ,Capes-Davis A,Davis JM。在生物医学研究中使用细胞系的指南。br j癌。2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。2014; 111(6):1021-1046。8。Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。肠道微生物。2020; 11(4):771-788。9。Jhuti D,Rawat A,Guo CM,Wilson LA,Mills EJ,Forrest JI。SARS-COV-2的干扰素治疗:挑战和机遇。感染了。2022; 11(3):953-972。10。Kaur G,Dufour JM。 单元线:有价值的工具或无用的文物。 精子发生。 2012; 2(1):1-5。Kaur G,Dufour JM。单元线:有价值的工具或无用的文物。精子发生。2012; 2(1):1-5。