纳米技术改变了药理学,使我们能够开发出副作用更少、更有效的药物输送系统。本综述旨在概述纳米技术在药物输送方面的最新进展和应用,强调其改善疾病诊断和治疗的潜力。分析了纳米粒子和纳米载体在治疗各种疾病方面的不同应用,将技术与医学相结合,探索先进的输送系统,并在分子水平上了解控制细胞的机制。纳米技术使我们能够开发出副作用更少、更有效的药物输送系统。纳米医学利用纳米技术改善药物向特定器官的输送,使医生能够实现他们所施用药物的最佳有效性和安全性。纳米粒子是纳米技术中用于输送药物和先进治疗的最常用工具之一。这些纳米粒子由于其大小、形状和表面化学性质,会影响身体与药物之间相互作用的各个方面。
参考文献1。Finestone E,Wishnia J.估计南非癌症的负担。s Afr J Oncol。2022; 6:1-7。 https://doi.org/10.4102/sajo.v6i0.220。2。Statssa.gov.za [Internet]。南非的死亡率和死亡原因:死亡通知的发现。南非:统计局; 2018。 1-149。 报告号 :P0309.3。 可从:http://www.statssa.gov.za/publications/ p03093/p030932018.pdf。 2023年8月16日访问。 3。 Hemmings HC,Egan TD,编辑。 麻醉的药理学和生理学:基础和临床应用。 第二版。 费城:Elsevier; 2019。 4。 Brusich KT,AcanI。非移植手术的移植受者的麻醉注意事项[Internet]。 in:Tsoulfas G,编辑。 器官捐赠和移植 - 当前状态和未来挑战。 intechopen; 2018。https:// doi.org/10.5772/intechopen.74329。 5。库珀总经理。 真核细胞周期[Internet]。 桑德兰:中国同事; 2000。 可从:https://www.ncbi.nlm.nih.gov/books/nbk9876/获得。 2023年8月31日访问。 6。 Mustapha A,Ismail A,Abdullahi S等。 癌症化学疗法:综述更新动作,前景和相关问题的机制。 J BioMed。 2022; 01(01):001-16。 https://doi.org/10.53858/bnas01010119。 7。 Katzung BG。 基本和临床药理学。 第五版。 8。南非:统计局; 2018。 1-149。报告号:P0309.3。可从:http://www.statssa.gov.za/publications/ p03093/p030932018.pdf。2023年8月16日访问。3。Hemmings HC,Egan TD,编辑。麻醉的药理学和生理学:基础和临床应用。第二版。 费城:Elsevier; 2019。 4。 Brusich KT,AcanI。非移植手术的移植受者的麻醉注意事项[Internet]。 in:Tsoulfas G,编辑。 器官捐赠和移植 - 当前状态和未来挑战。 intechopen; 2018。https:// doi.org/10.5772/intechopen.74329。 5。库珀总经理。 真核细胞周期[Internet]。 桑德兰:中国同事; 2000。 可从:https://www.ncbi.nlm.nih.gov/books/nbk9876/获得。 2023年8月31日访问。 6。 Mustapha A,Ismail A,Abdullahi S等。 癌症化学疗法:综述更新动作,前景和相关问题的机制。 J BioMed。 2022; 01(01):001-16。 https://doi.org/10.53858/bnas01010119。 7。 Katzung BG。 基本和临床药理学。 第五版。 8。第二版。费城:Elsevier; 2019。4。Brusich KT,AcanI。非移植手术的移植受者的麻醉注意事项[Internet]。in:Tsoulfas G,编辑。器官捐赠和移植 - 当前状态和未来挑战。intechopen; 2018。https:// doi.org/10.5772/intechopen.74329。5。库珀总经理。真核细胞周期[Internet]。桑德兰:中国同事; 2000。可从:https://www.ncbi.nlm.nih.gov/books/nbk9876/获得。2023年8月31日访问。6。Mustapha A,Ismail A,Abdullahi S等。癌症化学疗法:综述更新动作,前景和相关问题的机制。J BioMed。2022; 01(01):001-16。 https://doi.org/10.53858/bnas01010119。7。Katzung BG。 基本和临床药理学。 第五版。 8。Katzung BG。基本和临床药理学。第五版。 8。第五版。8。Norwalk(Conn。):Appleton&Lange; 1992。Milner A,Welch E,编辑。 麻醉和重症监护中的应用药理学。 第二版。 Milner和Welch(Pty)Ltd; 2019。 9。 Freeman BS,Berger JS,编辑。 麻醉核心评论:第1部分,基础考试。 纽约:麦格劳 - 希尔教育医学; 2014。 10。 Peck T,Harris B.麻醉和重症监护的药理学。 第五版。 剑桥大学出版社; 2021。https://doi.org/10.1017/9781108591317。 11。 Liu L,Ren B,Zhang H等。 中国肾移植接受者中米唑替替替替替替替替替替替替替啶的人群药代动力学分析。 移植Proc。 2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。 12。 Hussain Y,Khan H.免疫抑制药物。 encycl感染免疫。 2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。 13。 Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。Milner A,Welch E,编辑。麻醉和重症监护中的应用药理学。第二版。 Milner和Welch(Pty)Ltd; 2019。 9。 Freeman BS,Berger JS,编辑。 麻醉核心评论:第1部分,基础考试。 纽约:麦格劳 - 希尔教育医学; 2014。 10。 Peck T,Harris B.麻醉和重症监护的药理学。 第五版。 剑桥大学出版社; 2021。https://doi.org/10.1017/9781108591317。 11。 Liu L,Ren B,Zhang H等。 中国肾移植接受者中米唑替替替替替替替替替替替替替啶的人群药代动力学分析。 移植Proc。 2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。 12。 Hussain Y,Khan H.免疫抑制药物。 encycl感染免疫。 2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。 13。 Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。第二版。Milner和Welch(Pty)Ltd; 2019。9。Freeman BS,Berger JS,编辑。麻醉核心评论:第1部分,基础考试。纽约:麦格劳 - 希尔教育医学; 2014。10。Peck T,Harris B.麻醉和重症监护的药理学。第五版。 剑桥大学出版社; 2021。https://doi.org/10.1017/9781108591317。 11。 Liu L,Ren B,Zhang H等。 中国肾移植接受者中米唑替替替替替替替替替替替替替啶的人群药代动力学分析。 移植Proc。 2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。 12。 Hussain Y,Khan H.免疫抑制药物。 encycl感染免疫。 2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。 13。 Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。第五版。剑桥大学出版社; 2021。https://doi.org/10.1017/9781108591317。11。Liu L,Ren B,Zhang H等。 中国肾移植接受者中米唑替替替替替替替替替替替替替啶的人群药代动力学分析。 移植Proc。 2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。 12。 Hussain Y,Khan H.免疫抑制药物。 encycl感染免疫。 2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。 13。 Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。Liu L,Ren B,Zhang H等。中国肾移植接受者中米唑替替替替替替替替替替替替替啶的人群药代动力学分析。移植Proc。2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。 12。 Hussain Y,Khan H.免疫抑制药物。 encycl感染免疫。 2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。 13。 Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。12。Hussain Y,Khan H.免疫抑制药物。encycl感染免疫。2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。13。Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。in:Evers AS,Maze M,Kharasch ED,编辑。麻醉药理学。第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。第二版。剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。14。DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。nat Rev Rheumatol。2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。15。Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。Watson J,Ninh MK,Ashford S等。麻醉药物和与化学治疗剂的相互作用。oncol ther。2021; 9(1):121-38。 https://doi.org/10.1007/ S40487-021-00149-1。
背景:小檗碱是一种天然存在的生物碱,被广泛用于多种健康益处,包括体重管理和代谢紊乱。据报道,小檗碱的主要药理作用是通过激活 AMP 活化蛋白激酶,而其其他临床结果缺乏明确的作用机制。因此,本研究使用成熟的 Insilco 工具评估了小檗碱及其两种主要代谢物(小檗红碱和药根碱)在人体中的详细药理学。材料和方法:在 SwissTargetPrediction 服务器中确定了小檗碱及其代谢物的靶标,并使用 AutoDock vina 1.2.0 评估了它们的亲和力。使用 PrankWeb:配体结合位点预测工具评估了最高配体受体组合的结合位点。结果:激酶、酶和 A 家族 GPCR 被确定为小檗碱及其代谢物的三大靶标类别。观察到 ROCK2、PIK3CD、KCNMA1、CSF1R 和 KIT 是小檗碱及其代谢物的高亲和力靶点,亲和力值 <4 uM。小檗碱及其代谢物对所有 AMPK 和脂质/葡萄糖调节靶点(LDLR、DDP4 和 PCSK9)的亲和力均为 >10 uM。小檗碱及其代谢物对 ROCK2 的 IC50 值最小(<1 uM),而其其他高亲和力靶点(PIK3CD、KCNMA1、CSF1R 和 KIT)的 IC50 值 <5 uM。结论:多种多样的蛋白质靶点和观察到的新的亲和力靶点(ROCK2、PIK3CD、KCNMA1、CSF1R 和 KIT)为小檗碱及其代谢物在各种疾病条件下的潜在作用机制和治疗效果提供了有价值的见解,值得在合适的功效分析研究中进行验证。
课程评估在课程的最后几周,您将收到一封电子邮件,其中包含完成课程评估的指示。注意,课程评估提供了与教师评估不同的反馈,并且两者对于持续改进我们的计划非常重要。课程评估来确定如何改善课程的设计和交付方式。因此,通过完成这些评估,我们的课程将更好。您将通过与教师评估不同的网站完成课程评估。这些评估也是匿名的。
• 整合临床和药代动力学数据,为所有 TA 的药理学和非房室分析准备分析数据集,以供内部决策和监管备案 • 遵循严格、系统的流程,在研究中一致地解释源数据的缺陷,从而实现建模活动
简单摘要:我们引入了一种新颖的方法,以定量验证一种称为“空间定量系统药理学(SPQSP))的混合时空方法的性能。该平台由一个描述肿瘤生长动力学,抗肿瘤免疫反应和免疫检查点治疗的隔室QSP模型组成,该模型在全患者和基于空间剂的模型中,描述了肿瘤以模拟抗PD-1治疗(免疫检查点抑制剂)对模拟内部内部肿瘤内的肿瘤的作用。从计算数字病理学中采用的四个空间指标以及癌细胞与免疫细胞的比率被用来将肿瘤微环境分为“冷”,“混合”和“分隔”模式,这与治疗的效率有关。本研究比较了肿瘤内异质性描述指标的能力,促进了对特定癌症类型的未来全面和有形研究,作为单药或联合疗法的不同疗法以及免疫病理学多路复用样本。使用数值模拟对肿瘤内异质性有更好的定量理解可以帮助设计更有效的治疗方法。
• Mucopolysaccharidosis II (MPS II, Hunter syndrome) is a rare inherited lysosomal storage disorder caused by iduronate-2-sulfatase (IDS) deficiency • Disease hallmark is accumulation of the glycosaminoglycans (GAGs): Heparan and Dermatan Sulfate (HS and DS) • Multiple tissues and organs are affected, and two thirds have severe神经性疗法形式•当前护理标准是每周的IV注入ID的重组形式,该ID无法跨越血脑屏障(BBB),并且对神经发育没有明显的影响•大脑的递送是亨特综合征的关键未满足•与不同的交付途径和不同的MOAS
制药行业广泛使用次级药理学试验来确定药物在进入临床试验之前的安全性。这些研究涉及对小分子与主要受体以外的靶标的反应性的体外评估。目前缺乏关于如何进行次级药理学试验以及如何将其用于降低风险和识别危害的监管指导。这项工作的目的是将次级药理学数据与近期新药研究 (IND) 申请中的非临床毒性发现和新药申请 (NDA) 中的临床数据进行对比。次级靶标与各种器官中的非临床毒性发现相关。结果表明,许多器官毒性与次级药理学试验几乎没有相关性(曲线下面积 (AUC) <0.7)。然而,具有已知临床或非临床关联的靶器官对的表现远远优于没有已知关联的靶器官对,尤其是在当前行业阈值 50% 抑制的情况下。这表明,次要药理学结果可用于在开发早期识别一些非临床毒性。一旦完成对临床结果的分析,我们预计这些结果将为早期药物开发期间的次要药理学检测选择以及药物审查过程中的监管解释提供参考。
•QSP支持> 20个双重特定程序•成为IND的组成部分/预期组成部分•采用类似的方法适用于其他新型方式,即Protac,基因编辑,…
•基于机械,多阶层,数学模型,包括血液和肠道中的关键生物学机制,细胞分化,细胞因子产生和临床生物标志物(Rogers等人2021。https://doi.org/10.1111/cts.12849)•使用相同的基本生物学机制模拟CD和UC