使用图 1 所示的装置,对铜/二价铜离子镀层系统进行了广泛的研究,对增强机制有了一定的了解,这被认为是金沉积的基础。设计了特殊的阴极,将照射的镀层面积限制为直径几百微米的小点,或约等于激光束直径 (4)。将光束通过铂阳极上的开口射到阴极上,使用恒电位仪和三电极系统测量镀层电流与施加过电位的关系。结果发现,与没有激光照射时相比,当激光束照射到阴极时,镀层电流增加了 2 到 3 个数量级。相对于 SCE(饱和甘汞电极),在施加过电位从 0 到约 800 mV 的整个极化曲线上都观察到了增强。这些结果与早期使用差异很大的导热基底进行的实验相结合,得出了以下用于激光增强电沉积或蚀刻的热模型:(1)在低过电位下,增强是由于
图1:a)石墨电极的草图,该石墨电极由几个颗粒(带有波浪形的椭圆形)组成。b)具有金属锂(灰色)的石墨表面的强度。电解质中的溶解锂,板条的锂和插入的锂可以沿着三个显示的路径(箭头)反应。锂镀金N PL/ST和化学插入N CH.Int。出现在覆盖的表面A PL(紫色)时,而插入室间则是通过石墨和电解质之间的界面(深绿色)进行的。c)绘制了电化学模拟的石墨电极的细分。在每个元素上跟踪镀锂,从而可以部分覆盖石墨颗粒。
大多数商用锂离子电池的快速充电受到限制,这是由于担心石墨阳极上的锂电池,这很难检测到并带来很大的安全风险。在这里,我们演示了简单,可访问和高通量循环技术的功能,以量化来自200个以上细胞的不可逆li电镀数据。我们首先观察能量密度,电荷速率,温度和电荷(SOC)对锂电镀的影响,使用结果来完善基于成熟的物理学的电化学模型,并提供一个可解释的经验方程来预测镀金开发SOC。然后,我们探索锂电池的可逆性及其与电解质设计的连接,以防止不可逆的LI积累。最后,我们设计了一种量化商业相关石墨的原位li板的方法| lini 0.5 mn 0.3 CO 0.2 O 2(NMC)细胞,并与实验方便的LI |石墨配置的结果进行比较。本文中的假设和大量数据主要是用电池研究人员通用的设备生成的,鼓励进一步开发创新的测试方法和数据处理,从而可以快速电池工程。
我们提出了一种新的方法,用于自动化菌落成型单元(CFU)计数程序。我们开发的用于应用此方法的设备基于电动阶段和注射器,以便在没有与表面直接接触的板上散布包含感兴趣溶液的液体的NE滴。该设备可用于两种不同的模式。在遵循与经典CFU计数相同原理的第一个方法中,液体液滴均匀地沉积在琼脂板上,并允许微生物形成菌落。在我们称为P 0的第二种新颖方法中,含有微生物和营养培养基的10 µL的孤立液直接沉积在硬表面上的常规网格(塑料或玻璃)上;孵育后,使用显示内部生长迹象的滴剂用于确定微生物浓度。这种新方法消除了准备琼脂表面的需求,并允许轻松处理废物并重复使用消耗品。设备易于构建和使用,电镀速度很快,并且两种类型的电镀中的CFU计数非常可重复且稳健。
方法图1示出了传统上用于制造FPC的减成法。在铜箔层上形成抗蚀层,在蚀刻过程中,铜箔层的未覆盖部分被溶解并去除。之后,去除抗蚀层,铜箔层的剩余部分成为线路。在蚀刻过程中,蚀刻不仅在铜箔层的厚度方向上进行,而且在横向(侧蚀)方向上进行,这使得在高密度布线中难以缩小线路间距。此外,由于使用厚铜箔,需要蚀刻大量的铜材料,这导致侧蚀的进展变化很大,因此线路宽度变化很大。此外,蚀刻开始的铜箔层的上部比下部蚀刻得更多,结果,线路横截面的顶部比底部更窄
镀金用于航天级机械部件(电子电路外壳盒、载板等)。在电子领域,镀金用于提供耐腐蚀的导电表面。它还广泛用于半导体行业,例如电气开关触点、连接器插针和管筒以及其他发生间歇性电接触的应用。镀金通常用于航空航天应用。
技术转让和工业接口部 (TTID)、PPG 空间应用中心 (SAC)、ISRO、Ambawadi Vistar、艾哈迈达巴德 - 380 015 电子邮箱:ttid@sac.isro.gov.in 传真:079-26915817 https://www.sac.gov.in/SAC_Industry_Portal
提高对电池内化学反应的认识。基于光纤的传感器特别适合集成到电池中。[1,7,9–12] 光纤成本低,可以做得非常细,从而能够在电池的不同部位进行精确定位。它们对锂离子和钠离子电池中的恶劣环境也相对惰性,并且可以使用各种基于光谱的分析技术。[7] 通过电池内温度和应变的变化进行感测,间接影响改性光纤的光学特性,也已被证明。例如,Huang 等人将光纤布拉格光栅插入商用电池,通过温度和压力跟踪化学事件,[10] 而 Wang 等人采用等离子体光纤传感器监测水性锌空气电池中的电化学动力学。[11] Ghannoum 等人在许多论文中报道了使用光纤倏逝波 (FOEW) 光谱来表征电池。 [9,13] 例如,使用嵌入式光纤根据石墨的电致变色特性估算 SOC。 [14] 我们之前还使用过 FOEW 光谱来比较完全嵌入或放置在磷酸铁锂 (LFP) 正极表面的光纤的传感和电池性能。 在这些实验中,光纤传感区域的光调制也可能与 LFP 中铁的氧化和还原有关。 [15,16] 光纤在电池中的应用仍然处于相当低的技术准备水平,在商用电池中可能并非易事,但有可能为 BMS 提供重要信息,以优化电池组的使用。 总体而言,还必须提高对电池化学如何调节光纤/电池界面光的了解。锂离子电池最关键的安全问题之一是阳极形成锂枝晶的风险。[17–19] 这会导致电池短路,通常源于充电过程中锂离子嵌入速率不够时的锂沉积。金属锂沉积也是导致电池老化的一个重要因素[17],例如导致容量衰减速度加快。人们采用了各种各样的实验技术来分析和检测锂沉积。[17–19] 然而,这些技术中的大多数都基于大型、先进且昂贵的仪器,而这些仪器通常需要专门的实验电池或原型电池。其中一些技术也不是