检测磁振子及其量子特性,尤其是在反铁磁 (AFM) 材料中,是实现纳米磁性研究和节能量子技术发展中许多雄心勃勃的进步的重要一步。最近基于超导电路的混合系统的发展为设计利用不同自由度的量子传感器提供了可能性。在这里,我们研究了基于二分 AFM 材料的磁振子-光子-传输子杂化,这导致了二分 AFM 中传输子量子比特和磁振子之间的有效耦合。我们展示了如何通过超导传输子量子比特的 Rabi 频率来表征磁振子模式、它们的手性和量子特性,例如二分 AFM 中的非局域性和双模磁振子纠缠。
摘要 神经科学中的各种技术都涉及将单个探针放置在大脑的精确位置。然而,使用这种方法对大脑进行大规模测量和操作受到严重限制,因为无法将探针定位系统小型化。在这里,我们提出了一种全新的远程控制微定位方法,该方法由新型相变材料填充电阻加热器微夹钳组成,这些微夹钳以尺蠖电机配置排列。夹钳的微观尺寸、稳定性、轻柔的夹持动作、单独的电子控制和高封装密度允许使用单个压电致动器对许多任意形状的探针进行微米精度的独立定位。这种多探针单致动器设计显著减小了尺寸和重量,并允许微驱动器的潜在自动化。我们展示了在急性和慢性制剂中将多个电极准确放置在体内大鼠海马中。因此,我们的机器人微驱动器技术应该能够扩大神经科学和其他领域的多种多探针应用。
主组硫化岩广泛用于相变数据存储[1-3]和静电能量转换。[4 - 6]相变材料(PCM)可以可逆地在无定形状态和晶状状态之间切换,这些状态与二进制数字“ 0”和“ 1”相等。[1,7]上级PCM需要分别具有高速相变(包括高速相变的属性)以及两个状态之间的大型光学和电阻对比,分别是可重写的光学和非挥发性电子数据存储。[1,8],疗程材料需要大的电导率(σ),如金属中,具有高的seebeck系数(s)(如半轴),以及低导热率(κ)和低的导热率(κ ZT = S2σT /κ的序列。[9-11]有趣的是,这些苛刻且看似矛盾的要求是在一类葡萄菌化合物(例如Gete和SB 2 TE 3)及其合金中发现的。[3,12,13]这种令人惊讶的属性组合促使我们研究了负责属性独特投资组合的潜在机制。材料的特性通常受两种类型的因素约束。其中之一与由组成元素(即通过化学键合机制)连接的固有特性有关。[14]另一个因素与由空缺等结构缺陷控制的外在特性有关,[15,16]位错,[17 - 19]晶界(GBS),[20-23]
在每个书签处以及影片结尾处,都有要提出和讨论的问题,如本包中所述。您的角色是确保小组充分涵盖每个要点。每个问题都以粗体显示。这不是脚本 - 您可能希望讨论其他内容,或者可能会出现其他问题,但这些是要涵盖的关键点。
摘要 大多数用于产生纠缠和实际应用的量子系统都与环境不隔离,因此容易受到噪声的影响。两个系统之间在多个自由度上的纠缠被称为超纠缠,与传统纠缠态相比,它具有某些优势,包括对噪声的鲁棒性。量子照明、成像和通信方案涉及从一对纠缠光子中发送一个光子并保留另一个光子,通常只涉及将信号光子暴露在环境噪声中。噪声的破坏性会降低纠缠和其他相关性,而这些相关性对于许多此类应用至关重要。在本文中,我们研究了在噪声相互作用中使用某些路径偏振超纠缠态中的光子对的优势,其中只有一条路径中的光子受到噪声的影响。我们对这种噪声进行建模,并研究噪声对超纠缠光子中存在的相关性的影响。采用纠缠负性、纠缠见证和贝尔非局域性三种不同的方法来展示路径极化超纠缠探测态对噪声的弹性。
摘要 迈出了空中行星探索的第一步。Ingenuity 显示出非常有希望的结果,新的任务已经在进行中。旋翼机能够飞行。这种能力可用于支持进入、下降和着陆的最后阶段。因此,可以缩小质量和复杂性。自转是一种下降方法。它描述了无动力下降和着陆,通常由直升机在发动机故障时执行。建议使用 MAPLE 来测试这些程序并了解其他行星上的自转。在这一系列实验中,使用了 Ingenuity 直升机。Ingenuity 将在继续正常飞行之前自转“空中着陆”。最终,收集的数据将有助于了解火星上的自转及其在行星际探索中的应用。
关于盎鲁效应的一个长期争论是关于其模糊的热性质。在本文中,我们使用量子Fisher信息(QFI)作为一个有效的探针,从局域和全局两个角度探索盎鲁效应的热性质。通过解析UDW探测器的全动态,我们发现QFI是探测器能隙、盎鲁温度TU和背景场特性(如质量和时空维数)的时间演化函数。我们证明探测器达到平衡的渐近QFI仅由TU决定,证明了KMS条件暗示的盎鲁热性的全局方面。我们还证明盎鲁效应的局部方面,即探测器接近同一热平衡的不同方式,被编码在相应的QFI时间演化中。具体来说,我们发现在无质量标量背景下,QFI 在 n = 3 维时空中具有独特的单调性,而对于 n ̸= 3 模型(其中在早期存在局部峰值)和有限加速度,QFI 变为非单调性,这表明在相对较低的加速度下可以实现对 Unruh 温度的更高估计精度。一旦场获得质量,相关的 QFI 就会对 Unruh 退相干具有显著的稳健性,即其局部峰值可以维持很长时间。当与更大质量的背景耦合时,持久性甚至可以增强,并且 QFI 具有更大的最大值。QFI 的这种稳健性肯定可以促进任何实际的量子估计任务。
原理:为此,我们设计了一款微型探头,称为 Neuropixels 2.0,其 5120 个记录点分布在四个柄上。探头和头台被微型化为原始尺寸的三分之一左右(即 Neuropixels 1.0 探头的尺寸),因此两个探头及其单个头台仅重 ~1.1 克,且不会损失通道数(每个探头 384 个通道)。使用两个四柄探头可在一次植入中提供 10,240 个记录点。为了在脑部运动时也能实现稳定的记录,我们优化了记录点的排列。该探头具有更密集的线性化几何形状,可使用新设计的算法进行事后计算运动校正。该算法在 Kilosort 2.5 软件包中实现,可从脉冲数据确定随时间的运动,并使用空间重采样对其进行校正,就像在图像配准中一样。
在论文初步设计的基础上,本文总结了从比邻星附近返回科学数据的低质量星际探测器群的下行链路,其中最关键的技术问题,并在整个系统设计的背景下解释了它们的重要性。主要目标是确定如果使用目前可用的现成技术构建这样的下行链路,将面临哪些主要挑战或障碍,从而为未来对组成设计挑战和技术的研究提供方向和动力。虽然没有任何基本的物理限制会阻碍这种通信系统,但目前可用的技术在几个方面存在严重不足,还有其他一些重大的设计挑战,其解决方案尚不确定。已确定的最大挑战是质量限制、从多个探测器到同一目标系外行星的多路复用同时通信、姿态控制和指向精度以及由于探测器速度不确定性导致的多普勒频移。最大的技术挑战是电力、高功率和波长灵活的光源、选择性强且波长灵活的光学带通滤波器组以及暗计数率极低的单光子探测器。对于其中的一个关键子集,我们描述了我们遇到的困难的性质及其在整个系统环境中的起源。我们还考虑了将接收限制为单个探测器的接收器,并将其与群体情况进行了比较。
自从 80 年代发明以来,扫描探针显微镜 (SPM) 在大学和工业界中就非常流行,用于检查许多不同的样本参数。这是将这项技术更贴近操作员的效果。尽管易用性为不需要太多劳动力的测量提供了可能性,但定量分析仍然是市场上扫描探针显微镜的限制。根据纳米计量组的经验,SPM 仍然可以被视为定量检查热、电和机械表面参数的工具。在这项工作中,我们提出了一个 ARMScope 平台作为多功能 SPM 控制器,它被证明可用于各种应用:从原子分辨率 STM(扫描隧道显微镜)到多共振 KPFM(开尔文探针力显微镜)到商用 SEM(扫描电子显微镜)。