1 2 3 4 6 7 8 9 10 11. 16 18 315 312 415 52 512 512 512 512 510 512 512 515
HOX基因编码所有双遗物体中指定前轴的进化保守转录因子。HOX蛋白功能以其在外胚层衍生物(例如CNS和脊髓)中的作用而闻名。虽然在脊椎动物骨骼的情况下进行了很好的描述,但对HOX功能在不同肌肉类型的发展中的了解少得多。与脊椎动物相比,在果蝇果蝇中,对果实的果蝇的研究为在肌源性过程的多个阶段的多个阶段提供了宝贵的见解。在这里,我们提供了果蝇和脊椎动物肌肉发育中HOX蛋白功能的全面概述,重点是在此过程中调节靶基因的分子机制。强调了一个紧密的外胚层/中胚层交叉讲话以进行适当的运动,我们讨论了中枢神经系统和肌肉谱系规范之间的共同原理,以及HOX在神经肌肉电路中的新兴作用。
锌指蛋白 (ZNF) 是一类独特而多样的蛋白质,在转录调控、染色质重塑、蛋白质/RNA 稳态和 DNA 修复等基本细胞机制中发挥着关键作用。因此,ZNF 蛋白的错误调节可导致多种人类疾病,从神经发育障碍到多种癌症。考虑到 DNA 损伤修复 (DDR) 抑制在临床上取得了良好的效果,作为同源重组 (HR) 缺陷患者的治疗策略,确定其他潜在的可靶向 DDR 蛋白作为耐药肿瘤细胞中出现的弱点至关重要,尤其是考虑到获得性耐药的负担时。重要的是,越来越多的研究确定了新的 ZNF 并揭示了它们在几种 DDR 通路中的重要性,凸显了它们作为 DDR 抑制疗法新靶点的巨大潜力。尽管如此,仍有许多未表征的含 ZNF 蛋白具有未知的生物学功能。在这篇综述中,我们重点介绍了哺乳动物细胞中 ZNF 蛋白的主要类别和观察到的生物学功能。我们简要介绍了众所周知和新发现的 ZNF,并描述了它们的分子作用以及对人类健康和疾病(尤其是癌症)的贡献。最后,我们讨论了 ZNF 在 DNA 修复机制中的重要性、它们在癌症治疗中的潜力以及利用 ZNF 蛋白作为人类疾病未来治疗靶点的进展。
摘要 有关蛋白质结构分配的知识丰富了对蛋白质结构和功能的理解。准确可靠的结构分配数据对于二级结构预测系统至关重要。自 80 年代以来,基于氢键分析和原子坐标几何的各种方法以及随后的机器学习已用于蛋白质结构分配。然而,当蛋白质文件中存在缺失原子时,分配过程变得具有挑战性。我们的模型开发了一个名为 DLFSA 的多类分类器程序,用于使用卷积神经网络 (CNN) 分配蛋白质二级结构元素 (SSE)。一种快速高效的基于 GPU 的并行程序从蛋白质文件中提取片段。这项工作中实现的模型使用蛋白质片段子集进行训练,分别达到 88.1% 和 82.5% 的训练和测试准确率。我们的模型仅使用 C α 坐标进行二级结构分配。该模型也在一些全长蛋白质上成功测试。基于片段的研究结果证明了应用深度学习解决方案解决结构分配问题的可行性。
C2H2 锌指 (C2H2-ZF) 蛋白是人类转录因子的主要类别,它们通过不同的锌指结构域组合实现多种不同的分子功能。肝细胞癌 (HCC) 是最常见的恶性肿瘤之一,也是全球癌症相关死亡的主要原因。越来越多的研究结果支持 C2H2-ZF 蛋白的异常表达在 HCC 的发生和发展中起着重要作用。C2H2-ZF 蛋白参与 HCC 中的各种生物学功能,例如 EMT、干细胞维持、代谢重编程、细胞增殖和生长、细胞凋亡和基因组完整性。抗肿瘤药物耐药性研究也强调了 C2H2-ZF 蛋白在 HCC 生物学功能(EMT、干细胞维持、自噬)和化学耐药性交叉点上的关键作用。最近发现的 C2H2-ZF 蛋白参与调节不同的分子、信号通路和病理生理活动,表明这些蛋白质可能是 HCC 的可能治疗靶点以及诊断或预后生物标志物。
非编码 RNA(ncRNA)是恶性疟原虫免疫逃避和传播的新兴调节因子。RUF6 是一个由 RNA 聚合酶 III 转录但积极调节 Pol II – 转录 var 毒力基因家族的 ncRNA 基因家族。目前尚不清楚 RUF6 ncRNA 如何与下游效应物连接。我们开发了一种 RNA 引导的蛋白质组学发现 (ChIRP-MS) 方案来识别体内 RUF6 ncRNA - 蛋白质相互作用。用生物素化的反义寡核苷酸纯化 RUF6 ncRNA 相互作用组。定量无标记质谱法鉴定出几种与基因转录相关的独特蛋白质,包括 RNA Pol II 亚基、核小体组装蛋白和 DEAD 盒解旋酶 5 (DDX5) 的同源物。 Pf-DDX5 的亲和力纯化鉴定出最初由我们的 RUF6-ChIRP 方案发现的蛋白质,验证了该技术在鉴定恶性疟原虫中的 ncRNA 相互作用组方面的稳健性。核 Pf-DDX5 的诱导置换导致活性 var 基因的显着下调。我们的工作鉴定出一种 RUF6 ncRNA - 蛋白质复合物,它与 RNA Pol II 相互作用以维持 var 基因表达,包括一种可能解决 var 基因中 G-四链体二级结构以促进转录激活和进展的解旋酶。
非小细胞肺癌(NSCLC)占所有肺癌的80%~85%,是全球癌症相关死亡率最高的癌症。无论化疗或靶向治疗效果如何,治疗一年后都会产生耐药现象。热休克蛋白(HSPs)是一类参与蛋白质稳定性和细胞内多条信号通路的分子伴侣。目前已有大量报道显示HSPs家族在非小细胞肺癌中高表达,该分子也与蛋白质稳定性和细胞内多条信号通路有关。化疗药物或靶向药物对癌细胞的作用通常是诱导细胞凋亡,探讨热休克蛋白家族与NSCLC凋亡通路之间的相互作用十分必要。本文就HSPs如何影响NSCLC细胞凋亡途径作一简要综述。
模式识别受体 (PRR),例如 Toll 样受体 (TLR) 和核苷酸寡聚化结构域样受体 (NLR),在宿主对微生物感染的先天抵抗力中至关重要。这些受体识别病原体相关分子模式 (PAMP) 和危险相关分子模式 (DAMP),并将这些信号转化为生物反应。TLR 通过募集信号转导接头髓系分化初级反应蛋白 88 (MyD88) 和/或含有 TIR 结构域的接头蛋白诱导 IFN- β (TRIF) 及其各自的辅助接头 MyD88 接头样 (Mal) 和 TRIF 相关接头分子 (TRAM) ( 1 – 8 ) 来实现这一点。大多数 TLR 使用 MyD88 作为信号转导接头,但 TLR3 除外,它仅通过 TRIF 发出信号,而 TLR4 同时使用 TRIF 和 MyD88 ( 2 )。除 PRR 外,许多早期炎症反应还受白细胞介素 (IL)-1 细胞因子家族调节,包括 IL-1a、IL-1b、IL-18 和 IL-33 (9)。对这些细胞因子的反应由 IL-1 受体 (IL-1R) 以及密切相关的 IL-18R 和 IL-33R 介导,所有这些细胞因子都使用 MyD88 作为信号转导接头,类似于 TLR (9-11)。IL-1R 或大多数 TLR 的参与会导致 MyD88、IL-1 受体相关激酶 (IRAK) 4 和 IRAK2 或 IRAK1 的层级募集,随后是 E3 泛素连接酶 TNF 受体相关因子 6 (TRAF6) (10-18),形成
U技术包括 - Sanger,Illumina(短阅读),PACBIO(长阅读),Minion,Nanobore - 始终开发更多的时间