基因组分析是许多微生物学研究人员日常工作的一部分。这些分析经常揭示以不确定功能编码蛋白质的基因,对于许多细菌物种,这些未知基因构成了其基因组编码序列的显着比例。由于这些基因没有定义的功能,因此在分析中通常会忽略它们。实验确定基因的功能可能具有挑战性;但是,生物信息学工具的持续进步,尤其是在蛋白质结构分析中,使得逐渐更容易地将功能分配给假设序列。利用各种互补工具和自动化管道来注释假设序列,最终可以增强我们对微生物功能的理解,并为新的实验室实验提供方向。
大量证据支持蛋白质中本质上无序区域(IDR)在正常细胞功能和包括癌症在内的许多疾病过程中起关键作用[1]。尽管我们对IDR如何调节众多生物学过程(例如基因调节和细胞内信号传导)的理解有了很大的进步,但仍有许多空旷的问题和挑战。此外,IDR现在被广泛认为是生物分子冷凝物的驱动因素和调节剂,它们是无膜的亚细胞集线器,在活细胞中生化过程的动态分区中起重要作用[1]。突变已显示导致冷凝物的异常行为,导致细胞质中信号事件的失调以及细胞核中致癌转录程序的激活[2,3]。因此,迫切需要了解IDR的生物学功能的基础机械原理,并利用这些知识来针对其在疾病过程中的异常行为。
在这里,我们重点介绍一个合作项目,旨在开发阿尔茨海默病和帕金森病的新疗法。这项计划得到了 Jim 和 Phyllis Easton 的慷慨捐赠,他们在 Easton 公司和各种体育计划中都有组建成功团队的历史,包括对射箭和奥运会以及加州大学洛杉矶分校田径运动的国内和国际支持。Easton 家族创立并继续支持 Mary S. Easton 阿尔茨海默病中心,以鼓励校园内多个实验室之间的跨学科合作和团队合作,并促进对神经退行性疾病的理解和治疗的创新突破。我们试图设计和测试一种针对导致阿尔茨海默病、帕金森病和各种其他神经系统疾病(统称为“蛋白质病”)的畸形或错误折叠蛋白质的药物。虽然每种疾病都涉及独特的畸形蛋白质,但所有疾病都具有形成细长链或“淀粉样纤维”的共同特征。像僵尸一样,它们将正常蛋白质转化为新的僵尸样纤维,这一过程称为“播种”。然后纤维从一个神经细胞扩散到另一个神经细胞,随着疾病的进展,不可逆转地破坏电路。三个合作团队牵头开展了这个项目。加州大学洛杉矶分校分子生物学研究所的首席结构和计算生物学家 David S. Eisenberg 博士带领他的团队确定了蛋白质结构中的关键毒性区域,并设计了针对这些区域的药物,以减缓或逆转毒性纤维的形成和扩散。加州大学洛杉矶分校神经病理学核心中心的 Harry Vinters 博士及其团队使用了
摘要 靶向蛋白质降解最近已成为药物发现的一种新选择。天然蛋白质半衰期预计会影响降解剂的功效,但它对靶向蛋白质降解的影响程度尚未得到系统探索。通过对蛋白质降解进行数学建模,我们证明靶向蛋白质的天然半衰期对降解剂诱导的蛋白质降解水平有显著影响,这可能会给筛选工作带来重大障碍。此外,我们还表明,在筛选短寿命蛋白质降解剂时,会阻碍蛋白质合成的药物(如 GSPT1 降解剂和一般细胞毒性化合物)会误认为是蛋白质降解剂。例如,在 GSPT1 降解和用阿霉素等细胞毒性药物治疗后,MCL1 和 MDM2 等短寿命蛋白质会消失。这些发现对靶标选择以及得出新药物作为真正的靶向蛋白质降解剂所需的对照实验类型具有重要意义。
该政府战略汇集了一系列举措,旨在解决上述障碍并促进丹麦绿色蛋白质的发展。这些举措包括资助研发,这有助于提供更美味、更气候友好的食品蛋白质。政府还致力于在丹麦和欧盟提供更有利于创新的法规,同时不损害自然、环境、健康、饲料和食品安全以及动物健康。发展项目通过农业支持计划和基金得到支持,从长远来看,这将建立该领域的知识和理解,并提高丹麦生产的蛋白质的竞争力。该战略还包括政府努力提高丹麦产品和解决方案的国际化和出口,这可以促进销售,从而使丹麦的绿色蛋白质生产更具经济可行性。
在真核生物中,DNA 有多个包装层次,用于多种用途。这让 DNA 在细胞核中占用更少的空间,但同时也保护 DNA 免受物理损伤,并调节 DNA 对蛋白质的可及性。例如,当 DNA 包装得非常紧密时,通常“读取”它的蛋白质无法访问它,从而使一些基因失去活性。
rliiancthiols Onro金弧A弧Modcl s \'Srcms用于prorcin adsorpdon ai inrcrfaccs的Rhc srudv。\\'c prcparcd rhc s.t \ ls bv thc thc chcmisorp chcmisorp chcmisorp chcmisorp chcmisorps crhanol或mcrhanol中的v solutions of crhanol或mcrhanol oth Rhin(200 t 20 nm)金6 lrns supponcd in silicon r*'afcrs(7)。in 5l \ 1s dcrivc'l来自to subsdnrtcd d-brc-i-thiols [r(ch2)“ sh,n] 10,whcrc f。molco.rlcs dcnxh'on thc gold mrfacc在prcdom-u中:aidv rr.rrucrcodcd conformatioq u'idr thc r-rcs rhc pohmcrhvlcnc thc pohmcrhvlcnc cairiu thc pohmcrhvlcnc ceartu ceartu ceartu ceartu centeru = 30thc ir; rhcsc Monolavers arc pscu-cosr的c-ral dorneiru:uilinc; THC链rcrmini是LCSS或CCRCD(9)。onc可以巩固r。 “ mi,rcd s。
摘要近年来生物制剂在各种疾病中的使用已大大增加。中风是一种脑血管疾病,是第二大最常见的死亡原因,也是全球发病率高的残疾原因。用于用于治疗急性缺血性中风的生物制剂,Alteplase是唯一的溶栓剂。同时,当前的临床试验表明,两种重组蛋白,Tenecteplase和非免疫原性葡萄球菌酶,作为用于急性缺血性中风治疗的新溶栓剂的最有前途的。此外,使用干细胞或类器官进行中风治疗的基于干细胞的治疗在临床前和早期临床研究中显示出令人鼓舞的结果。这些急性缺血性中风的策略主要依赖于未分化的细胞的独特特性来促进组织修复和再生。但是,在这些方法成为常规临床用途之前,仍有一段巨大的旅程。这包括优化细胞输送方法,确定理想的细胞类型和剂量以及解决长期安全问题。本综述介绍了缺血性中风中溶栓治疗的当前或有希望的重组蛋白,并突出了中风治疗中干细胞和大脑器官的前景和挑战。
核孔复合物(NPC)介导细胞核和细胞质之间的所有流量,是细胞中最稳定的蛋白质组件之一。有趣的是,发芽的酵母菌细胞具有两个NPC的两个变种,它们在存在或不存在核篮蛋白MLP1,MLP2和12 PML39的情况下有所不同。这些篮子蛋白的结合发生在NPC组装中很晚,而MLP阳性NPCS 13被排除在与核仁接壤的核包膜区域中。14在这里,我们使用重组诱导的TAG交换(RITE)来研究单个NPC中所有NPC 15子复合物的稳定性。我们表明,核篮蛋白MLP1,MLP2和16 PML39通过多个细胞分割循环与NPC保持稳定,并且MLP1/2是17负责将NPC从核方区域排除。此外,我们证明了NUP2的18结合还通过独立途径从该区域耗尽了MLP阴性NPC。我们19开发了一种在萌芽酵母中进行单个NPC跟踪的方法,并观察到在没有核篮成分的情况下,NPC在没有核篮成分的情况下表现出20个迁移率。我们的数据表明,NPCS 21在核上的分布受核篮蛋白与核内部的相互作用的控制。22
DNA纳米结构引导的蛋白质将蛋白质组装成可编程的形状Qinyi Lu 1,Yang Xu 2,3,Erik Poppleton 3,Kun Zhou 4,Kun Zhou 4,Petr Sulc 2,3,Petr Sulc 2,3,Nicholas Stephanopoulos 2,3 *亚利桑那州立大学设计与生物仪,亚利桑那州坦佩市,亚利桑那州坦佩85287,美国3分子科学学院,亚利桑那州立大学,亚利桑那州坦佩,亚利桑那州坦佩85287,美国4美国生物医学工程系,乔治亚大学技术和埃默里大学,乔治亚州埃默里大学,乔治亚州3032222222222222. yonggang.ke@emory.edu摘要