基因组编辑技术发展的最终目标是实现任何细胞或生物体中精准的基因组改变。本文我们描述了原生质体系统,该系统利用预组装的 Cas9 核糖核蛋白 (RNP) 复合物在拟南芥、本氏烟、白菜和亚麻荠中实现精准、高效的 DNA 序列改变。Cas9 RNP 介导的双 gRNA 基因破坏在拟南芥原生质体中可达到约 90% 的插入/缺失。为了便于测试任何 Cas9 RNP 设计,我们开发了两个 GFP 报告基因,从而可以灵敏地检测非同源末端连接 (NHEJ) 和同源定向修复 (HDR),编辑效率分别高达 85% 和 50%。当与最佳单链寡脱氧核苷酸 (ssODN) 供体共转染时,RNP 通过 HDR 对 AtALS 基因的精确编辑达到 7%。值得注意的是,预组装引物编辑器 (PE) RNP 介导的精确诱变导致原生质体中 GFP 报告基因回收率为 50%,基因组中特定 AtPDS 突变的编辑频率高达 4.6%。原生质体中 CRISPR RNP 变体的快速、多功能和高效基因编辑为开发、评估和优化基因和基因组操作的新设计和工具提供了宝贵的平台,适用于多种植物物种。
摘要 Cre1 是一种重要的转录因子,可调节碳分解代谢抑制 (CCR),在真菌中广泛保守。cre1 基因已在几种子囊菌中得到广泛研究,而其在担子菌物种中基因表达调控的作用仍不太清楚。在这里,我们鉴定了 Coprinopsis cinerea 并研究了 cre1 的作用,Coprinopsis cinerea 是一种可以有效降解木质纤维素植物废物的担子菌模型蘑菇。我们使用一种基于 PCR 扩增的分裂标记 DNA 盒以及体外组装的 Cas9 引导 RNA 核糖核蛋白 (Cas9 RNPs) 的快速有效的基因缺失方法来生成 C. cinerea cre1 基因缺失菌株。两个独立的 C. cinerea cre1 突变体的基因表达谱显示碳水化合物代谢、植物细胞壁降解酶 (PCWDE)、质膜转运蛋白相关基因和几种转录因子编码基因等显著失调。我们的研究结果支持以下观点:与子囊菌中的报告一样,C. cinerea 的 Cre1 通过多种基因的联合调节来协调 CCR,包括 PCWDE、正向调节 PCWDE 的转录因子和可以导入可诱导 PWCDE 表达的单糖的膜转运蛋白。有些矛盾的是,虽然与其他伞菌一致,但与木质素降解相关的基因在 cre1 突变体中大多下调,表明它们受到的调节与其他 PCWDE 不同。基因缺失方法和此处提供的数据将扩展我们对担子菌中 CCR 的了解,并为与植物生物质降解相关的基因提供功能假设。
摘要:微藻可以分别利用大气中的二氧化碳和阳光作为碳源和能量来源,产生工业相关的代谢物。开发用于高通量基因组工程的分子工具可以加速产生具有改良性状的定制菌株。为此,我们开发了一种基于 Cas12a 核糖核蛋白 (RNP) 和同源定向修复 (HDR) 的基因组编辑策略,以产生微藻 Nannochloropsis oceanica 的无疤痕和无标记突变体。我们还开发了一种基于附加质粒的 Cas12a 系统,用于在目标位点有效地引入插入/缺失。此外,我们利用 Cas12a 处理相关 CRISPR 阵列的能力来执行多路复用基因组工程。我们在一次转化中有效地靶向宿主基因组中的三个位点,从而朝着微藻的高通量基因组工程迈出了重要一步。此外,还开发了一种基于 Cas9 和 Cas12a 的 CRISPR 干扰 (CRISPRi) 工具,用于有效下调目标基因。我们观察到在 N. oceanica 中用 dCas9 执行 CRISPRi 后,转录水平降低了 85%。总体而言,这些发展大大加速了 N. oceanica 的基因组工程工作,并可能为改良其他微藻菌株提供通用工具箱。关键词:Nannochloropsis、微藻、基因组编辑、CRISPR-Cas、基因沉默、核糖核蛋白、Cas9、Cas12a ■ 介绍
摘要:高效的基因传递系统对于植物基因工程至关重要。传统的传递方法已被广泛使用,例如农杆菌介导的转化、聚乙二醇 (PEG) 介导的传递、基因枪轰击和病毒转染。然而,这些技术的基因型依赖性和其他缺点限制了基因工程的应用,特别是许多农作物的基因组编辑。迫切需要开发新的基因传递载体或方法。最近,纳米材料如介孔二氧化硅颗粒 (MSN)、AuNP、碳纳米管 (CNT) 和层状双氢氧化物 (LDH) 已成为将基因组工程工具 (DNA、RNA、蛋白质和 RNP) 高效地以物种独立的方式传递给植物的有前途的载体。已经报道了一些令人兴奋的结果,例如成功将货物基因传递到植物中以及产生基因组稳定的转基因棉花和玉米植物,这为植物基因组工程提供了一些新的常规方法。因此,本文综述了纳米材料在植物遗传转化中的应用进展,并讨论了不同方法的优势和局限性,强调了纳米材料在植物基因组编辑中的优势和潜在的广泛应用,为纳米材料在植物基因工程和作物育种中的应用提供指导。
摘要:Castanea sativa是全球重要的树坚果物种,以其多功能作用,尤其是木材和坚果生产而受到高度赞赏。如今,需要采取新的策略来实现对疾病,气候变化,更高产量和营养质量的植物弹性。 在新的植物育种技术(NPBT)中,CRISPR/CAS9系统代表了在短时间内改善植物育种的强大工具。 此外,CRISPR/CAS9构建体可以以核糖核蛋白(RNP)的形式传递到细胞中,从而避免通过原生质体技术避免外源DNA(无GMO-FRO)整合,这代表了基因编辑的有趣材料,这要归功于高度渗透性的DNA膜。 在本研究中,我们开发了从欧洲栗子体细胞胚胎开始的第一个原生质体隔离方案。 针对细胞壁消化优化的酶溶液含有1%纤维素酶Onozuka R-10和0.5%MacRozyme R-10。 在黑暗条件下在25℃孵育4小时后,获得了4,500,000个原生质体/mL的产率(可行的91%)。 使用GFP标记基因评估转染能力,转染原生质体的百分比为51%,在转染事件后72小时。 然后对靶向植物去饱和酶基因的直接递送进行了纯化的RNP。 结果揭示了CRISPR/CAS9 RNP和有效的原生质体编辑的预期目标修饰。如今,需要采取新的策略来实现对疾病,气候变化,更高产量和营养质量的植物弹性。在新的植物育种技术(NPBT)中,CRISPR/CAS9系统代表了在短时间内改善植物育种的强大工具。此外,CRISPR/CAS9构建体可以以核糖核蛋白(RNP)的形式传递到细胞中,从而避免通过原生质体技术避免外源DNA(无GMO-FRO)整合,这代表了基因编辑的有趣材料,这要归功于高度渗透性的DNA膜。在本研究中,我们开发了从欧洲栗子体细胞胚胎开始的第一个原生质体隔离方案。针对细胞壁消化优化的酶溶液含有1%纤维素酶Onozuka R-10和0.5%MacRozyme R-10。在黑暗条件下在25℃孵育4小时后,获得了4,500,000个原生质体/mL的产率(可行的91%)。使用GFP标记基因评估转染能力,转染原生质体的百分比为51%,在转染事件后72小时。然后对靶向植物去饱和酶基因的直接递送进行了纯化的RNP。结果揭示了CRISPR/CAS9 RNP和有效的原生质体编辑的预期目标修饰。
面对人口快速增长、气候变化和疾病,精准工程对作物性状改良的进步至关重要。为此,使用 RNA 引导的 Cas9 的靶向双链断裂技术已被广泛用于植物基因组编辑。通过农杆菌或粒子轰击递送编码 Cas9 和向导 RNA (gRNA) 的质粒很常见,但需要优化表达,并且通常会导致质粒 DNA 随机整合到植物基因组中。最近的进展描述了通过将 Cas9 和 gRNA 作为预组装的核糖核蛋白 (RNP) 递送到各种植物组织中进行基因编辑,但在产生再生植物方面效率中等。在本报告中,我们描述了小麦中 Cas9-RNP 介导基因编辑的重大改进。我们证明,原生质体中的 Cas9-RNP 检测是一种快速有效的工具,可用于合理选择可再生未成熟胚胎 (IE) 中用于基因编辑的最佳 gRNA,并且高温处理可提高两种组织类型的基因编辑率。我们还表明,在金粒子轰击的小麦 IE 中,Cas9 介导的编辑至少持续 14 天。本研究中再生的编辑小麦植株在没有外源 DNA 和选择的情况下以高比率恢复。通过这种方法,我们敲除了一组三个同源基因和两个致病效应易感基因,从而设计出对相应基因的不敏感性
图 1 甜瓜植物体内 RNP 介导的基因组编辑。(a) 微粒介导的 GFP 基因转移到甜瓜 SAM。(b) 甜瓜基因组编辑 iPB-RNP 方法概述。(c) 携带目标 CmGAD1 基因座突变的阳性 E 0 植物的 CAPS 分析。符号“–”和“+”分别表示不使用和使用 Cas9 RNP 的消化。黑色和白色三角形分别表示 Cas9 RNP 处理后的未消化和消化条带。(d) 阳性 E 0 植物的 CRISPR/Cas9 靶序列与野生型的 CRISPR/Cas9 靶序列的比对,插入和缺失用红色字母突出显示。(e) 对来自两个 E 0 植物(#2-13 和 #2-16)的 E 1 植物进行基因特异性 CAPS 分析,使用与 (c) 中相同的符号。(f) 具有 gRNA 设计的 CmACO1 基因示意图。 (g) 针对 CmACO1 的基因组编辑实验总结。(h) cmaco1 纯合突变系 (#3-2,E 2 代) 的基因特异性 CAPS 分析,使用与 (c) 一致的符号。(i) 野生型和 cmaco1 中 CmACO1 的氨基酸序列比较,CRISPR/Cas9 的靶位点用下划线表示,序列变化用红色字母表示。星号表示终止密码子。(j 和 k) 收获后野生型和 cmaco1 果实的外观 (j) 和纵切面 (k)。(l) 授粉 40 天后测量的野生型和 cmaco1 果实 (E 2 代中的个体植物 E2-1 和 E2-2) 的乙烯产生量。数据以平均值±SE (n=3) 表示。
通过可编程核酸酶(包括成簇调控间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) (CRISPR/Cas9) 系统)进行的定向诱变已被广泛用于生成基因组编辑生物,包括开花植物。迄今为止,在生殖细胞或组织中特异性表达 Cas9 蛋白和向导 RNA (gRNA) 被认为是可遗传定向诱变最有效的基因组编辑方法之一。在本报告中,我们回顾了生殖细胞或组织的基因组编辑方法的最新进展,这些细胞或组织在将遗传物质传递给下一代方面发挥着作用,例如卵细胞、花粉粒、合子、未成熟合子胚和茎尖分生组织 (SAM)。 Cas9 蛋白在起始细胞中的特异性表达可有效诱导农杆菌介导的植物转化中的靶向诱变。此外,通过将 CRISPR/Cas9 成分直接递送到花粉粒、受精卵、胚胎细胞和 SAM 中,已成功建立基因组编辑,以生成基因组编辑的植物系。值得注意的是,通过递送 Cas9-gRNA 核糖核蛋白 (RNP) 进行的无 DNA 基因组编辑与任何有关转基因生物的立法问题无关。总之,生殖细胞或组织的基因组编辑方法不仅对植物生殖的基础研究具有巨大潜力,而且对分子植物育种的应用科学也具有巨大潜力。
用于农业和生物医学应用的基因编辑猪通常使用体细胞核移植 (SCNT) 生成。然而,SCNT 需要使用单克隆细胞作为供体,而耗时费力的单克隆选择过程限制了大批基因编辑动物的生产。在这里,我们开发了一种快速有效的方法,称为 RE-DSRNP(报告 RNA 富集双 sgRNA/CRISPR-Cas9 核糖核蛋白),用于生成基因编辑供体细胞。 RE-DSRNP利用双sgRNA精准高效的编辑特点和报告RNA富集的RNP(CRISPR-Cas9核糖核蛋白)高编辑效率、低脱靶、无转基因、低细胞毒性的特点,无需筛选单克隆细胞,将供体细胞的生成时间从3-4周大大缩短至1周,同时也降低了供体细胞凋亡和染色体非整倍体的程度。我们应用RE-DSRNP技术生产了带有野生型p53诱导的磷酸酶1(WIP1)基因缺失编辑的克隆猪:在32头断奶克隆猪中,31头(97%)携带WIP1编辑,15头(47%)为设计片段缺失纯合,未检测到脱靶事件。 WIP1 基因敲除 (KO) 猪表现出雄性生殖障碍,这说明 RE-DSRNP 可用于快速生成精确编辑的动物,用于功能基因组学和疾病研究。RE-DSRNP 在大型动物中的强大编辑性能以及其显著缩短的 SCNT 供体细胞生成所需时间,为其在快速生成无转基因克隆动物种群中的应用前景提供了支持。
CRISPR/Cas 已成为多种生物体中遗传操作的最先进的技术,能够以前所未有的效率进行有针对性的遗传改变。本文中,我们报告了在重要的坏死性植物病原体灰霉病中首次建立强大的 CRISPR/Cas 编辑,该方法基于将优化的 Cas9-sgRNA 核糖核蛋白复合物 (RNP) 引入原生质体。通过开发一种将 RNP 递送与含端粒的瞬时稳定载体共转化相结合的新策略,进一步提高了编辑产量,从而允许临时选择和方便地筛选无标记编辑事件。我们证明,与现有的基于 CRISPR/Cas 的丝状真菌方法(包括模型植物病原体稻瘟病菌)相比,这种方法提供了更高的编辑率。编辑菌株的基因组测序显示很少有额外的突变,也没有 RNP 介导的脱靶证据。端粒载体介导编辑的高性能通过随机诱变 sdhB 基因的 272 个密码子得到证实,该基因是琥珀酸脱氢酶抑制剂 (SDHI) 杀菌剂抗性的主要决定因素,方法是将 272 个密码子批量替换为编码所有 20 种氨基酸的密码子。在没有选择的情况下,所有交换的频率都相似,但 SDHI 选择允许识别新的氨基酸替换,这些替换赋予了对不同 SDHI 杀菌剂的不同抗性水平。基于 RNP 的共转化效率提高且易于操作,有望加速 B . cinerea 和其他真菌的分子研究。
