重组腺相关病毒(RAAV)是通常用于基因治疗的病毒载体。残留的宿主细胞DNA是一种与感染和致癌性风险有关的杂质。因此,需要对其进行监控以进行质量控制。我们旨在开发针对18S核糖体RNA(RRNA)基因的液滴数字聚合酶链反应(DDPCR)方法,以定量残留宿主细胞DNA。使用两组共享C-末端的启动对确定18S rRNA基因的拷贝数。对于将18S rRNA基因的拷贝数转化为基因组DNA的质量浓度,HEK293基因组DNA中18S rRNA基因的准确拷贝数通过与三个参考基因的拷贝数(EIF5B,DCK和HBB的拷贝数进行比较)确定。结果表明,回收了88.6–97.9.9%的HEK293基因组DNA,被回收到RAAV制剂中。将基于DDPCR的分析应用于RAAV制剂,以定量残留的宿主细胞DNA作为杂质。我们的发现表明该测定可用于RAAV产品中残留宿主细胞DNA的定量和尺寸分布。
metatranscriptome(metat)测序是分析微生物组动态代谢功能的关键工具。除了分类信息外,Metat还提供了宿主和微生物种群的实时基因表达数据,从而允许对微生物组及其宿主的功能(酶)输出的真实定量。有效且准确的元数据分析的主要挑战是从这些复杂的微生物混合物中去除高度丰富的rRNA转录本,这些混合物可以在数千个种类中进行数量。不管rRNA耗竭的方法论如何,基于微生物组的分类学含量的RRNA去除探针的设计通常需要大量的单个探针,这使得这种方法使商业上生产,昂贵且经常在技术上不可行。在先前的工作[1]中,我们使用仅基于序列丰度的设计策略为人类粪便样品设计了一组耗竭探针,完全不可知的是存在的微生物物种。在这里,我们表明,与小鼠盲肠样品一起使用时,基于人类的探针效果较差。然而,将其他rRNA耗竭探针专门针对盲肠含量提供了更高的效率和一致性,以用于对小鼠样品的元分析。
1内分泌科,南京医科大学,台州临床医学院,南京医科大学,中华人民共和国江苏,蒂苏医学院,台风临床医学院; 2泛血管管理中心,南京医科大学,台风医学院,台州临床医学院,南京医科大学,中国人民共和国陶苏,北京医科大学; 3内分泌学系,Xuzhou医科大学的Huai'an医院和中华人民共和国Huai'an的第二人民医院; 4核医学系,南京医科大学的核医学系,中华人民共和国陶欣,南京医学院,南京医学院,南京医学院,南京医学院5心脏病学系,南京医科大学,台州临床医学院,北京医科大学,中国人民共和国,江苏,南京医学院
磷是一种矿物质,主要以固体形式存在于土壤中,植物不易吸收和利用。这是因为它与土壤中的其他元素形成了强键,形成了一种不易溶于水的化合物。因此,磷溶性微量元素作为改善植物缺磷的替代解决方案长期以来被研究。这项研究的重点是评估这些微量营养素对大豆生产的有效性,因为埃塞俄比亚存在大面积酸性土壤,所以植物不易吸收磷。为了进行这项研究,我们在实验室中从大豆根部土壤中分离出五种磷溶性微量元素。人们已经研究了这些微量元素溶解与钙、铁和铝形成化合物的磷的能力。此外,利用特定的基因片段(16S-23S rRNA 区域)来识别微生物的种类。目前已在田间六个地点研究了这些微量营养素产量的潜在增长。研究证实该微量元素具有从钙、铁、铝化合物中除去磷的作用。另外,在研究微生物的遗传学时,发现1种属于假单胞菌属微生物,4种属于芽孢杆菌属。田间产量评估研究表明,在已鉴定的微生物中,假单胞菌属微生物(指定为 EPS1)与固氮微生物(慢生根瘤菌,MAR 1495)可使大豆产量平均提高 17.2%。这比我们将推荐量的一半磷与上述富氮肥料混合所获得的产量增加还要多。这项研究表明,应选择并充分研究磷溶性微量营养素,以提高植物对磷的利用率。
的不同DNA中,并作为模板进行了绝对定量的16S rRNA植物群分析。从获得的标准物质导线中制备了校准曲线,并计算了百日咳芽孢杆菌的16S rRNA基因的拷贝数,并对不同来源的DNA平均计算了百日咳的拷贝数。这表明该产品可用于比较不同样品之间的细菌体积和控制每个分析测试的准确性。
基于扩增子的NGS针对细菌16S rRNA基因或真菌ITS1区域,传统上用于阴道微生物组分析。尽管此方法具有成本效益,但它不适合可靠地解决物种水平,实际上通常仅限于属水平分辨率。最近在NGS平台上的突破是长阅读技术的开发,例如牛津纳米孔技术提供的技术。尽管这些平台启用了全长16S rRNA基因扩增子测序,但已证明在物种水平上提供了更好的分辨率,而不是短阅读技术4,而长阅读平台往往每个基础准确性,较高的总成本和较低的吞吐量5,6。相反,shot弹枪宏基因组测序目标不仅是16S rRNA基因/真菌ITS1区域,而且是微生物组的集体基因组信息,该信息允许在该物种和应变水平3,7上进行分类识别。
项目背景:微生物组在人类健康和疾病中起重要作用。下一代16S rRNA基因测序是一种强大的技术,用于表征粪便,诸如感染,癌症,糖尿病,神经退行性疾病和肥胖等疾病的样品中的细菌组成。微生物组分析有望有望诊断和整合常规临床微生物学。但是,16S测序数据所需的生物信息学分析的复杂性仍然是一个主要障碍。开发简化的管道来简化此分析对于常规诊断使用至关重要。目标:该项目的目的是通过一般微生物组组成输出来构建和验证16S rRNA基因测序分析的标准化生物信息学管道和工作流程。方法:Qiime2将与NextFlow结合使用,以创建标准化的16S rRNA测序工作流,用于微生物组分析。微生物组测序和常规诊断的分析数据将用于测试和验证工作流程。
Amplicon宏基因组学是基于微生物RRNA基因的NGS测序。由于ngs读取长度受到限制,因此只能放大和测序rRNA基因的一部分。对于原核生物,该分析靶向16S rRNA基因的高变量区域(V1-9),而对于真菌,内部转录的间隔区域(ITS)用于分类分析(见图1)。理想的底漆系统应该足够通用,以涵盖广泛的分类群体,而随之而来的扩增子必须提供足够的分类信息来进行可靠的分类学分类。根据我们的经验和16S/ITS分析管道的验证,我们建议表1中显示的引物系统。我们的服务不仅限于显示的标记基因和底漆系统,还限于其他系统发育标记基因(例如,细胞色素C氧化酶I)和底漆系统可以使用。试点研究对于为您的特定研究问题找到最佳的底漆系统非常有帮助。
摘要:传统上,螺原体仅从花和其他植物部位的表面、各种昆虫的内脏和血淋巴以及维管植物的液体(韧皮部汁液)和以这些液体为食的昆虫中分离出来。在本文中,我们报告了在虾中发现的第一种致病螺原体,以及通过组织学评估、原位杂交测定、透射电子显微镜、16S rRNA 序列同源性和注射感染性研究对其进行表征的结果。此外,还介绍了为检测这种微生物而开发的分子方法,该微生物被确定为哥伦比亚养殖的南美白对虾的病原体,导致其死亡率很高。使用标准组织学方法和原位杂交测定,证实南美白对虾感染了这种致病螺原体。组织学分析显示受影响器官/组织出现全身性炎症反应。为了鉴定细菌,使用来自初始流行区的冷冻感染南美白对虾样本对 16S rRNA 基因进行测序并开发分子检测方法。通过 PCR 扩增 16S rRNA 基因,然后进行测序。使用 GenBank BLAST 搜索分析序列数据,结果显示与柑橘树病原体柑橘螺原体有 98% 的同源性。对 16S rRNA 序列数据进行评估以开发针对假定螺原体的独特 PCR 引物。使用针对螺原体属的螺旋素基因开发的 PCR 引物,开发并测试了地高辛标记的探针。该探针是物种特异性的,与以此形式测试的其他细菌样本没有发生阳性反应或交叉反应。
背景:通过鼻吸附对鼻衬液(NLF)采样最少侵入性且耐受性良好,但是使用此技术评估鼻微生物组的可行性尚不清楚。但是,低生物量使气道样品特别容易受到与污染物DNA有关的问题。在这项研究中,我们评估了使用方法学对低生物量呼吸样品分离的DNA的适用性,并评估了与传统的拭子采样方法相比,通过鼻吸附收集的衬里液的衬里如何捕获鼻微生物的多样性和组成。方法:从成年志愿者那里收集鼻拭子和NLF。DNA。评估DNA的质量和数量,并进行了短阅读16S rRNA测序,以评估可行性和提取偏见。然后使用优化的提取方法从NLF和鼻拭子中提取DNA,并且进行了全长16S rRNA测序,以比较NLF和鼻拭子之间的微生物谱。使用NF核/Ampliseq管道,PacificBiosciences/PB-16S-NF管道或软件EMU分类分类法分类,并使用R Packages Temages and Mixomics进行下游分析。结果:所有提取方法均从模拟群落中恢复了DNA,但仅基于降水的方法从NLF产生了足够的DNA。提取方法显着影响微生物谱,需要机械裂解以最大程度地减少针对特定属的偏差。曲线与长读测序相当。结论:我们的发现证明了使用通过鼻吸附收集的NLF分析鼻微生物组的可行性,并验证了两种提取方法,作为适合全长的16S rRNA测序的低生物量呼吸类样品的RRNA测序。我们的数据证明了在低生物量呼吸样品中无偏DNA提取方法的重要性,以及随后DNA提取对观察到的微生物谱的影响。此外,我们证明了NLF可能是使用16S rRNA测序评估鼻拭子的适当替代样品。