治疗上的miRNA提出了挑战和机遇。因为它们在全球范围内调节基因表达会改变miRNA活性,这可能会恢复疾病状态的正常细胞功能。但是,一个miRNA可以针对数百个mRNA的miRNA网络的复杂性意味着治疗策略必须高度具体,以避免意外后果。一种方法是开发合成miRNA模拟物或抑制剂。miRNA类似物的设计是为了增加癌症等疾病中表达的miRNA的表达,而miRNA抑制剂可用于阻断过表达的miRNA的活性。研究这些基于miRNA的疗法的临床试验仍处于早期阶段,但作为治疗靶标的miRNA的潜力仍然很重要。研究这些基于miRNA的疗法的临床试验仍处于早期阶段,但作为治疗靶标的miRNA的潜力仍然很重要。
主机:Rafael de Freitas E Silva和Wilfried Ellmeier控制感染期间巨噬细胞反应或对无菌损害的反应的机制是Lidia Bosurgi博士的Laboratoy博士的主要研究领域。她的研究重点是分析垂死细胞的吞噬作用,这是巨噬细胞在身体所有组织中执行的至关重要的任务,对组织重塑的启动。These results have led Lidia Bosurgi's lab to investigate tissue-specific factors that contribute to the transcriptional and functional heterogeneity of phagocytic macrophages in a variety of settings, such as homeostasis, infection with the parasite Schistosoma mansoni , and murine models of autoimmune liver diseases, colitis, inflammation-driven cancer, and metabolic challenges.通过探索巨噬细胞吞噬作用机制的复杂性质及其对免疫反应,组织稳态和疾病进展的后果,她旨在帮助开发新的方法,以增强各种疾病的管理和治疗。访问Lidia Bosurgi网站选出了最新出版物:•Liebold等。“凋亡细胞的身份在胚胎细胞宏观噬菌体中诱导对IL-4的不同功能响应。”科学。2024 APR 5; 384(6691):EABO7027。doi:10.1126/science.abo7027。EPUB 2024 APR 5.PMID:38574142•HAMLEY等人。 “ NMES1是影响肠道愈合潜力的粘膜反应的新型调节剂”。 EUR J Immunol。 2024年2月; 54(2):E2350434。 doi:10.1002/eji.202350434。 EPUB 2023 11月28日。 PMID:37971166•Zhao等。 Sci Adv。EPUB 2024 APR 5.PMID:38574142•HAMLEY等人。“ NMES1是影响肠道愈合潜力的粘膜反应的新型调节剂”。EUR J Immunol。 2024年2月; 54(2):E2350434。 doi:10.1002/eji.202350434。 EPUB 2023 11月28日。 PMID:37971166•Zhao等。 Sci Adv。EUR J Immunol。2024年2月; 54(2):E2350434。doi:10.1002/eji.202350434。EPUB 2023 11月28日。PMID:37971166•Zhao等。 Sci Adv。PMID:37971166•Zhao等。Sci Adv。“经吞噬作用通过TIMP1促进恶性胸腔积液”。2021 8月13日; 7(33):EABD6734。doi:10.1126/sciadv.abd6734。打印2021 8月PMID:34389533
• TA 请求:由于 FERC 命令 2222,PUC 希望审查他们认为应该解决的问题清单,以允许聚合商在其零售电力市场中运营,并更好地了解其他州的做法,以告知 PUC 可能希望如何优先考虑这些问题 • TA 交付:最近允许聚合商参与零售电力市场的州的书面清单,并讨论已解决和优先考虑的问题
图5-17(a)由细菌性农杆菌引起的玫瑰茎上的外部和横截面视图。(b)细菌Ti质粒结构以及在受感染植物中T-DNA的转移,整合和表达的示意图表示,从而导致冠状胆囊产生。
1 关于本文所用语言的说明:对于“人工智能”、“种族和民族”和“公平”等关键术语的定义,并没有普遍的共识。在所有情况下,我们都力求包容,而不是排斥,在任何情况下,我们都不会贬低任何人的观点的重要性,也不会通过我们的术语伤害某个人或某个群体。为了回应的目的,我们对“人工智能”进行了广泛的定义,包括一系列技术和标准化实践,尤其是那些依赖机器学习或统计理论的技术和实践。我们在种族和民族方面使用以下语言:黑人、拉丁裔、亚裔美国人、夏威夷原住民或其他太平洋岛民、美洲印第安人/阿拉斯加原住民和白人。我们通常不使用“公平”或“负责任”的人工智能系统,而是使用“非歧视性”一词来指代不会以禁止的方式对人们进行差别对待或影响的人工智能系统,并使用“公平”来指代促进公平结果的人工智能系统,特别是那些解决历史歧视问题的人工智能系统。最后,“偏见”一词根据上下文有多种含义,因此,在可能的范围内,我们试图澄清我们指的是种族偏见、模型偏见还是其他形式的偏见。2 关于金融机构使用人工智能(包括机器学习)的信息和评论请求,86 Fed. Reg. 16837(2021 年 3 月 31 日),https://www.federalreserve.gov/newsevents/pressreleases/files/bcreg20210329a1.pdf。
摘要 背景 尽管基于 B7 同源物 3 蛋白 (B7-H3) 的免疫疗法取得了进展,但耐药性的产生仍然是临床上的主要问题。B7-H3 表达的异质性和新出现的缺失是靶向治疗中耐药性和治疗失败的主要原因,这揭示了迫切需要阐明调节 B7-H3 表达的潜在机制。在本研究中,我们确定并探讨了转录因子 SPT20 同源物 (SP20H) 在 B7-H3 表达和肿瘤进展中的关键作用。 方法 在这里,我们进行了基于 CRISPR/Cas9 的基因组规模功能丧失筛选,以确定人卵巢癌细胞中 B7-H3 的调节因子。通过 RNA 测序揭示了 SP20H 敲除改变的信号通路。使用体外功能丧失和功能获得分析验证了 SP20H 在 B7-H3 表达中的调控作用和机制。在荷瘤小鼠中评估了抑制 SP20H 对肿瘤生长的影响和抗 B7-H3 治疗的疗效。结果我们确定 SUPT20H (SP20H) 是各种癌细胞中 B7-H3 表达的负调节剂,而 eIF4E 是正调节剂。此外,我们还提供了证据,表明肿瘤细胞中的 SP20H 缺失或 TNF- α 刺激会组成性激活 p38 MAPK-eIF4E 信号传导,从而上调 B7-H3 表达。SP20H 缺失在体内和体外均上调 B7-H3 表达。此外,SP20H 缺失可显著抑制肿瘤生长并增加肿瘤微环境中免疫细胞的浸润。更重要的是,与对照组相比,针对 B7-H3 的抗体-药物偶联物对 SP20H 缺陷型肿瘤表现出更优异的抗肿瘤性能。结论 p38 MAPK-eIF4E 信号的激活是肿瘤细胞转录起始和 B7-H3 蛋白表达的关键事件。SP20H 基因靶向可上调靶抗原表达,使肿瘤对抗 B7-H3 治疗敏感。总之,我们的研究结果为 B7-H3 表达的潜在机制提供了新的见解,并为现有的针对 B7-H3 的抗体靶向治疗引入了潜在的协同靶点。
摘要:水稻B型反应调节蛋白含有一个保守的接收结构域,随后是一个GARP DNA结合结构域和较长的C末端,其中RR21、RR22和RR23等B型反应调节蛋白参与水稻叶片、根、花和毛状体的发育。为评估B型反应调节蛋白在水稻遗传改良中的应用潜力,本研究利用CRISPR/Cas9基因组编辑技术分别敲除水稻13个B型反应调节基因,在敲除载体上同时表达两个引导RNA(gRNA)以突变一个基因。利用特异性引物通过PCR筛选T 0 转化植株,筛选出大片段DNA缺失的植株。在T 1 代用Cas9特异性引物检测CRISPR/Cas9基因编辑突变体,筛选出不含Cas9的纯合突变体,并测序确认其靶区域。获得了除RR24外的12个OsRR突变体材料,初步表型观察发现不同突变体材料中株高、分蘖数、分蘖角度、抽穗期、穗长和产量等重要性状发生了变异。
✉函数和材料请求应发给迈克尔·C·巴西克(Michael C. Bassik)。bassik@stanford.edu。作者贡献R.A.K.和M.C.B.构思并设计了这项研究。R.A.K. 为全基因组CRISPR筛选设计了癌症 - 巨噬细胞共培养系统。 R.A.K. 在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。 和K.S.和B.M. 在KARPAS-299细胞中进行了CRISPR屏幕。 Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.为全基因组CRISPR筛选设计了癌症 - 巨噬细胞共培养系统。R.A.K. 在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。 和K.S.和B.M. 在KARPAS-299细胞中进行了CRISPR屏幕。 Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。和K.S.和B.M.在KARPAS-299细胞中进行了CRISPR屏幕。Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。Y.N.在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。a.m.m.和A.A.B.通过I.L.W.的建议进行了合成小鼠实验。和F.V.-C。 D.F.生成了APMAP同源模型。J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。J.A.S.在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。L.J.-A.分析了单细胞RNA-sequering数据。R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.和M.G.进行了incucyte分析以验证CRISPR淘汰赛。R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K,M.G。和S.L.克隆的sgrna载体和产生的基因敲除细胞系。R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.进行了蛋白质印迹,共聚焦显微镜和药物滴定。M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。M.G.,S.L。和R.A.K.进行了流式细胞仪分析。R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.和S.L.执行了RNA-sequest,D.Y.和K.L.分析了RNA测序数据。D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。D.Y.帮助设计了寡核苷酸子图和K.S.克隆了子图。R.A.K. 和M.C.B. 写了手稿。 所有作者都讨论了结果和手稿。R.A.K.和M.C.B.写了手稿。所有作者都讨论了结果和手稿。
12月17日,由24个民主党和共和党成员组成的两党特遣队发出了一份报告,该报告有关在各个部门使用人工智能的使用。本报告介绍的一个领域之一是金融业,工作队对此提出了一些关键的发现和建议。随着AI继续重新定义金融行业,它正在重塑金融产品和服务的开发,交付和规范。但是,意识到AI的全部承诺需要一种细微的方法,以平衡创新与需要强大的消费者保护和监管监督的需要。金融部门对AI并不陌生。众议院报告提到,金融公司数十年来一直在使用与AI相关的技术,这是一个例子,例如1982年,数学家和发明家詹姆斯·西蒙斯(James Simons)如何建立了“探索算法交易的定量对冲基金”。最终,金融机构开始依靠算法,这些算法可能会迅速做出交易决策,而无需人工干预。”AI的最新进展,包括生成AI,只提高了技术的采用速度。一般而言,AI已被监管机构,金融公司和坏行为者在金融部门雇用。监管机构长期以来一直依靠AI来协助反洗钱和银行保密法。美国财政部恐怖主义和金融情报办公室使用人工智能来对抗恐怖主义的融资并执行制裁制度。工作队强调需要了解监管机构可以在多大程度上跟上私营部门的人工智能技术的步伐。他们还建议提高AI的开发和部署方式。工作队进一步指出,出于避免有偏见或歧视性结果的目的,必须训练大型语言模型的数据是“代表性和高质量的”。有效地使用AI在金融服务中取决于高质量,安全数据。AI系统中使用的数据的完整性至关重要,因为错误或偏见可能导致决策,监管风险或消费者危害。监管机构已开始利用AI来监控合规性和检测违规模式,但是这种做法尚未广泛。较小的金融机构由于资源限制以及将这些工具整合到现有系统中的复杂性而面临的AI技术面临重大挑战,可能会加剧竞争性差异。AI还可以用于在服务不足的社区和其他人不容易进入银行或市场的地区的竞争环境中升级。这些功能对扩大对金融产品的访问有重大影响。
本报告概述了监管机构和行业当前的举措,并详细分析了最相关的 ESG 相关国际举措以及第三方框架和标准。它还确定了一些可以改进的领域,并阐明了 IOSCO 在这一领域发挥关键作用的必要性。例如,SFN 迄今为止的工作表明需要提高可持续性相关披露的可比性。第三方框架之间缺乏一致性和可比性可能会对跨境金融活动造成障碍,并引发投资者保护问题。该报告反映了监管机构和市场参与者的期望,即 IOSCO 应在促进全球协调和解决透明度问题方面发挥积极作用。