摘要:病毒感染所有细胞生命形式,并引起各种疾病和全世界的重大经济损失。大多数病毒是阳性的RNA病毒。各种RNA病毒感染感染的共同特征是诱导受感染宿主细胞中膜结构改变的形成。的确,在进入宿主细胞后,植物感染的RNA病毒靶向细胞内膜系统的首选细胞器,并重塑细胞器膜形成类似细胞器的结构,用于病毒基因组复制,称为病毒复制细胞器(VRO)或病毒复制复制复合物(VRC)。不同的病毒可能会募集不同的宿主因子进行膜修饰。这些膜封闭的病毒诱导的复制工厂提供了最佳的保护性微环境,可将病毒和宿主成分集中到可靠的病毒复制中。尽管不同的病毒更喜欢特定的细胞器来构建VRO,但至少其中一些人具有开发替代细胞器膜进行复制的能力。除了负责病毒复制外,某些病毒的VRO还可以移动,以通过内膜系统以及细胞骨架机制到达质量卵布(PD)。病毒运动蛋白(MP)和/或与MP相关的病毒运动复合物还利用了内膜 - 胞骨骨骼网络,用于对PD的传统,后代病毒通过细胞壁屏障进入相邻细胞。
在1975年,米洛斯拉夫·拉德曼(Miroslav Radman)报道了可诱导的细菌DNA修复/诱变系统,即SOS响应,在DNA损伤突然增加时,该响应被激活(1)。后来的研究表明,SOS通过吸引环境感应途径来增强遗传变异(2),该途径启动转录程序并突变基因组,从而增强抗生素耐药性(3)。真核生物共享压力诱导的诱变(SIM)的类似机制,反对普遍的假设,即突变纯粹是随机发生的(4)。最近,已经证明SIM能够推动对靶向疗法的获得性抗性(5)。此外,将雷帕霉素的机械靶标鉴定为一种应激感应的变阻器,可介导多种癌症类型的SIM(6)。
抽象背景:癌症染色体不稳定性的主要驱动力是复制应力,DNA复制的减慢或失速。尚不清楚如何连接复制应力和基因组不稳定性。蚜虫蛋白诱导的复制应力会在常见的脆弱部位诱导分裂,但是易于脆弱的确切原因,并且没有充分探索复制应力的急性基因组后果。结果:我们表征单个二倍体非转化细胞中的DNA拷贝数改变(CNA),这是由一个细胞周期在蚜虫或羟基脲存在下引起的。产生了多种类型的CNA,与不同的基因组区域和特征相关,观察到的拷贝数景观在蚜虫蛋白和羟基脲诱导的复制应力之间是不同的。将CNA与基因表达和单细胞复制时间分析的耦合细胞类型分析指向蚜虫中最复发的染色体尺度CNA的致病性大基因。这些在RPE1上皮细胞中的7号染色体上聚集在染色体上,但染色体在BJ成纤维细胞中。染色体臂水平CNA还会产生含有这些染色体的染色质和微核。结论:由复制应力驱动的染色体不稳定性通过局灶性CNA和染色体臂尺度的变化发生,后者仅限于很小的子集染色体区域,潜在地倾斜了癌症基因组的进化。复制应力的不同诱导者导致独特的CNA景观,从而提供了机会,从而得出了特定复制应力机械的拷贝数签名。单细胞CNA分析揭示了复制应力对基因组的影响,从而提供了对癌症中染色体不稳定性的分子机制的见解。
摘要 ◥ 目的:基因组不稳定性是癌症的一个标志,靶向 DNA 损伤反应 (DDR) 正在成为不同实体肿瘤的一种有前途的治疗策略。靶向 DDR 在结直肠癌中的有效性尚未得到广泛探索。实验设计:我们用 ATM、ATR、CHK1、WEE1 和 DNA-PK 抑制剂以及化疗药物对 112 个重现转移性结直肠癌基因组景观的细胞模型进行了测试。然后我们专注于 ATR 抑制剂 (ATRi),为了确定反应和耐药的假定生物标志物,我们在多个层面分析了对这些药物高度敏感或耐药的结直肠癌模型。结果:我们发现大约 30% 的结直肠癌,包括携带 KRAS 和 BRAF 突变且对靶向药物无反应的结直肠癌,对至少一种 DDR 敏感
本出版物中的信息按“原样”提供。戴尔公司不对本出版物中的信息做任何形式的陈述或保证,并明确否认对适销性或特定用途适用性的默示保证。使用、复制和分发本出版物中描述的任何软件均需要适用的软件许可证。本文档可能包含某些与戴尔当前语言指南不一致的词语。戴尔计划在后续版本中更新文档以相应地修改这些词语。本文档可能包含来自第三方内容的语言,这些语言不受戴尔控制,并且与戴尔当前针对戴尔自身内容的指南不一致。当相关第三方更新此类第三方内容时,本文档将进行相应修订。版权所有 © 2016-2022 戴尔公司或其子公司。保留所有权利。戴尔科技、戴尔、EMC、戴尔 EMC 和其他商标是戴尔公司或其子公司的商标。其他商标可能是其各自所有者的商标。 [2022/4/29] [技术白皮书] [H15088.8]
摘要:嵌合现象是使用 CRISPR/Cas9 在胚胎中进行一步基因编辑的最重要限制,因为切割和修复有时会在受精卵的第一次 DNA 复制后发生。为了尽量降低嵌合现象的风险,本研究在细胞中释放 CRISPR/Cas9 后使用了可逆性 DNA 复制抑制剂。之前没有关于在猪胚胎中使用阿非迪霉素的信息,因此首先评估了不同浓度的该药物对 DNA 复制的可逆抑制和对胚胎发育的影响。用不同浓度和不同递送方法的 CRISPR/Cas9 测试了与阿非迪霉素孵育的效果。结果观察到了对 DNA 复制的可逆抑制,并且它具有浓度依赖性。确定了 0.5 µ M 的最佳浓度并将其用于后续实验。将该药物与 CRISPR/Cas9 一起使用后,观察到嵌合性减半,同时对胚胎发育产生不利影响。总之,使用可逆的 DNA 复制抑制提供了一种减少嵌合性的方法。然而,由于胚胎发育的减少,必须达到平衡才能使其使用可行。
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 复制转录复合物 (RTC) 是一种多结构域蛋白,负责在人体细胞内复制和转录病毒 mRNA。用药物化合物攻击 RTC 功能是治疗 COVID-19 的途径。传统工具,例如低温电子显微镜和全原子分子动力学 (AAMD),无法提供足够高的分辨率或时间尺度来捕捉这种分子机器的重要动态。因此,我们开发了一种创新的工作流程来弥合这些分辨率之间的差距,使用中尺度波动有限元分析 (FFEA) 连续模拟和 AI 方法层次结构,不断学习和推断特征以保持 AAMD 和 FFEA 模拟之间的一致性。我们利用多站点分布式工作流管理器来协调 AI、FFEA 和 AAMD 作业,从而实现 HPC 中心间资源的最佳利用。我们的研究提供了前所未有的途径来研究 SARS-CoV-2 RTC 机制,同时为大规模支持 AI 的多分辨率模拟提供了通用能力。
重新组体负责复制每个增殖细胞中的全部基因组DNA。这个过程允许遗传/遗传信息从亲本细胞到子细胞的高保真通过,因此对所有生物都是必不可少的。大部分细胞周期都是围绕确保在没有错误的情况下进行DNA复制的。DNA复制是一个能量昂贵的过程。在细胞周期的G 1期中,启动了许多DNA复制调节过程。在真核生物中,绝大多数DNA合成发生在细胞周期的阶段,并且整个基因组必须解开并重复以形成两个女儿副本。在G 2期间,纠正了任何受损的DNA或复制误差。最后,在有丝分裂或M期将基因组的一个副本隔离到每个子细胞。这些女儿的副本每个都包含来自亲本双链DNA的一条链和一个新生的反平行线。这种机制是从原核生物到真核生物的保守,被称为半守护DNA复制。半保守复制的过程提出了DNA复制位点的几何形状,即叉状的DNA结构,其中DNA螺旋是开放的或开放的,可暴露于未配对的DNA核苷酸,以识别识别和基础配对,以将frefotixides掺入FreeTranded DNA中(图1)。
第 9 页,共 28 页 此外,病毒株序列分析还表明,SARS-CoV-2 中 AC 基序中 C 的突变率较高。