结核病(TB)是仅次于Covid19的感染因素的第二大死亡原因。这种疾病是由结核菌细菌引起的。但是,还有其他细菌也可以在人类和其他动物中引起它,并且是结核分枝杆菌复合物的一部分,即:M。Afri Canum,M。Cannetti,M。Orygis,M。Orygis,M。Bovis,M。Microti,M。Microti,M。Canetti,M。Caprae,M。Caprae。M. Pinnipedi和M. Mungi。TB会影响身体的不同组织;但是,在大多数情况下,它会影响肺部,称为肺结核。受这种疾病影响的患者会出现症状,例如咳嗽需要超过15天的时间来治愈,咳嗽,体重减轻,食欲不振,夜汗和发烧峰。
许多先进的反应堆概念要求材料在长期使用期间能够抵抗恶劣环境中的各种应力。因此,在某个时候,材料降解(例如蠕变、疲劳、脆化)将开始,如果不加以控制,其发展最终可能导致失效。虽然降解过程根据材料、负载和条件的不同而不同,但它们总是从微观结构水平开始,然后发展到宏观尺度,最终断裂。由于停机检查成本极高,因此最好实施在线状态监测,以保持工厂运行,直到需要维护。超声导波与损伤的相互作用使其非常适合状态监测,如下所述。本文研究的在线状态监测系统的要求是 (i) 耐高温和 (ii) 检测早期损伤的能力。
简介:地震会对基础设施造成大规模破坏并造成人员伤亡。从 1990 年到 2010 年,印度经历了 9 次以上大地震,造成约 30,000 人死亡。虽然某些地区(例如 IS 1893(第 1 部分)-2016 规定的地震区 V 中的地区)更容易发生地震,但印度没有一个地区可以完全免受这种威胁。每天都会发生许多小地震。过去地震中建筑物的糟糕表现暴露了它们的脆弱性,促使工程师和建筑师优先设计更具抗震效率的结构。印度约 60% 的陆地面临中度至极重度地震的风险。人口稀少地区的大地震造成的破坏可能小于人口稠密地区的中度地震。大地震后的实地调查显示,大多数人员伤亡是由于建筑物倒塌造成的。缺乏抗震知识及其在建筑设计和施工中的应用导致结构失效。许多农村和城市建筑都是低层、非工程结构,最容易受到损坏。地震期间,地震波向四面八方辐射,水平振动尤其容易导致结构损坏。这些波会导致建筑物地基移动,从而在结构构件中产生惯性力。建筑物在地震中的抗震性能受其形状、大小和几何形状以及载荷路径特性的影响。抗震设计抗震设计理念旨在保护结构和人的生命。它要求承重构件在轻微、频繁的震动中保持完好无损,在中等、偶尔的震动中承受可修复的损坏,并在罕见的强烈震动中承受严重损坏而不倒塌。本研究考察了这些常见建筑类型的施工实践。在必要时,参考规范规定,为当地施工实践提供了建议。此外,本研究还讨论了抗震技术的潜在未来趋势。研究目标:本研究旨在调查地震对传统建筑和抗震建筑的影响。此外,该项目还旨在研究增强建筑结构抗震能力的先进材料及其开发方法。更具体的目标包括:
镁合金具有密度低、强度高、重量轻等特点,是航空和机械工程工业中最先进的结构材料之一,但它们能在 500°C 以上的温度下自燃,并且能持续燃烧,即使在轻微紧急情况下也可能导致灾难性的后果。本文旨在研究可以增强镁合金阻燃性的成分。对商用铸造合金 ML10、LPSO 结构合金、含稀土金属的先进铸造合金以及这些合金中添加不同添加剂(可提高阻燃性的药剂)的变体的燃点进行了比较。已确定,同时含有 LPSO 相和 Yb 或 Ca 添加剂(可将燃点提高到 1000°C 甚至更高的添加剂)的合金可提供最大的阻燃性。
培训计划的参与者是来自州政府各个部门的土木工程师,他们直接参与建筑设计、施工和建筑/结构维护。所有参与者都熟悉地震风险缓解的需求和要求。参与者的州分布
重要的机会性人类病原体肺炎链球菌中的抽象抗生素抗性正在上升。在β-乳酰胺抗生素阿莫西林(这是一线疗法)的情况下,这尤其有问题。因此,发现杀死或对抗阿莫西林耐药性肺炎球菌的靶标至关重要。为此,我们使用称为Scrilecs-Seq的CRISPR干扰(CRISPR干扰库的亚集)开发了一个全基因组,基于单细胞的基因沉默屏幕,该筛选是由荧光激活的细胞分选提取的,耦合与下一代测序)。由于阿莫西林会影响生长和分裂,因此使用SCRILECS-SEQ来识别负责维持适当细胞大小的靶标。我们的屏幕表明,大甲酸酯途径的下调会导致广泛的细胞伸长。进一步研究这种现象,这表明它是由于细胞壁合成部位在细胞壁合成部位的可用性降低而引起的,这是由于未依赖磷酸盐(UND-P)的限制,这是脂质载体,该脂质载体负责将这些前体跨细胞膜运输。数据表明,即使肽聚糖的合成仍在继续,即使降低了UND-P水平,但细胞收缩也被专门停止。我们成功利用了这一知识,以创建一种组合治疗策略,其中FDA批准的药物氯米芬是一种UND-P合成的抑制剂,与阿莫西林配对。我们的结果表明,克罗米芬增强了阿莫西林蛋白的抗菌活性,并且联合疗法使耐肺炎链球菌恢复活力。这些发现可以提供一个起点,以开发越来越多的难以治疗的抗肺炎球菌感染的解决方案。
摘要 在过去的几十年里,癌症的治疗前景发生了变化。由于先进的癌症生物学、功能成像和下一代测序技术,我们对癌症及其治疗方法的理解得到了极大的提高。癌症治疗的关键挑战之一是如何有效杀死癌细胞,同时保持正常细胞完好无损。随着特定的致癌驱动因素被成功识别,靶向治疗在临床实践中取得了巨大成功。然而,获得性耐药性仍然是靶向癌症治疗持续成功的主要障碍。那些最初对靶向治疗反应良好的患者最终会对治疗产生耐药性。揭示潜在机制将有助于开发克服耐药性的新疗法。为了模拟长期药物治疗后的临床耐药性,我们通过对荷瘤小鼠或癌细胞系持续给药靶向药物建立了一组药物诱导的耐药肿瘤模型,涵盖了一系列一线靶向药物,包括 Sotorasib、Palbociclib、Ibrutinib、Capmatinib、Fulvestrant、Tamoxifen 和 T-DM1。耐药模型来自含有特定致癌驱动因素的敏感模型。经过靶向药物治疗和多次传代,耐药模型表现出稳定的耐药表型。鉴于靶基因突变、旁路激活或肿瘤微环境演变可促进治疗耐药和癌症进展,我们进行了转录本和蛋白质分析以探索分子机制,并评估了在已建立的模型中克服耐药性的潜在治疗策略。总之,药物诱导的耐药肿瘤模型为更好地理解耐药机制和加速开发下一代抗癌药物提供了有希望的机会。
每种药物的耐药细胞系(红色标记)将接受化学探针库处理,以识别化疗增敏剂。在 384 孔板中,类器官细胞将单独接受化合物库处理,或与亚致死剂量的治疗药物联合使用。我们将识别仅在联合使用时才显示毒性的化学探针(图 1C)。在准备筛选时,确认了 384 孔板中的接种一致性(图 1D)。为了进行质量控制(Z 因子和 Z-Prime 因子),每个筛选板将包含阳性和阴性对照。单一药物和联合使用后的活力数据
关于 AI Technology, Inc. 自 1985 年率先将柔性环氧树脂技术用于微电子封装以来,AI Technology 一直是开发用于电子互连和封装的先进材料和粘合剂解决方案的主导力量之一。除了率先使用“相变”材料 (PCM) 作为热界面材料 (TIM) 外,AI Technology 还为微电子封装行业提供了柔性环氧树脂热粘合剂。通过管理粘合粘合剂之间热膨胀系数差异引起的界面应力,这些热管理材料已在关键的军事和航空航天应用中得到广泛使用和成功。相同的无应力介电粘合剂现已适用于铜和铝包覆的绝缘金属基板。这些热管理材料的主要优势是无与伦比的长期可靠性,这归因于其能够承受反复的热循环和散热板与电路层之间的无应力粘合。AI Technology 还为更先进的多层绝缘金属基板电路和模块提供具有高导热性的相同柔性环氧预浸料。这种新型热管理材料为太阳能电池、LED 面板等电源模块的大面积热管理提供了平台和基础设施。AI Technology 拥有全系列芯片和基板粘接膜和糊剂、热界面材料、(EMI/RFI)缓解材料解决方案、导电填缝剂和粘合剂以及先进的柔性和绝缘金属电路基板。该公司在新泽西州普林斯顿交界处占地 16 英亩的园区内拥有经 ISO9001:2000 认证的制造和研发设施。销售支持包括公司在中国深圳和香港的直属办事处以及欧洲和亚洲的销售代表。