尽管目前尚未获得绒毛膜血症的批准治疗,但基因增强疗法已显示出在临床试验中的安全性和功效。6 - 10相关和客观的结果指标对于确定适合包含的患者,选择干预时间的最佳时间以及评估治疗效果。尽管在大多数视网膜疾病中,监管机构通常认为高对比度最佳的视力敏锐度是可靠的视觉功能标记,但在具有遗传性视网膜营养不良的患者中,包括脉络膜性疾病,包括脉络膜性疾病,但可靠性可能会有所不同,可以降低,以确定视力远见的真实变化。脉络膜血症中的自然史数据表明,尽管在早期试验中有能力改善,但视力在典型的12个月临床试验期间没有显着变化,11,12限制了其作为功能结果指标的价值。此外,到视力明显下降时,该疾病处于晚期阶段,大多数视网膜组织可能通过基因治疗而无法挽救和修复。13一起,这些观察结果鼓励 -
4,5 学生,SRM 科学技术研究所软件工程系摘要 - 在本研究中,我们打算使用深度学习架构来诊断视网膜光学相干断层扫描 (OCT) 图像中的脉络膜新生血管。光学相干断层扫描 (OCT) 图像可用于区分健康眼睛和患有 CNV 疾病的眼睛。研究中使用了深度学习的 DenseNet 和 Vgg16 架构,并更改了两种架构的超参数以正确诊断疾病。检测到疾病后,使用用于处理图像的 Python OpenCV 库将患病的 OCT 图像与背景分割开来以进行感兴趣区域检测。架构实施的结果表明,Vgg16 在检测图像方面比密集网络架构表现出更好的效果,准确率为 97.53%,比密集网络高出约一个百分点。关键词——深度学习、CNN、Vgg16 模型、密集网络模型、视网膜 OCT I 引言光学相干断层扫描是诊断视网膜疾病最广泛使用的诊断成像方法之一。OCT 机器的输出提供 OCT 图像,并提供足够的可视化效果来预测 OCT 胶片上印记的视网膜血管是否存在一些定性和定量变化。视网膜层的增加或减少及其测量值是疾病检测临床试验中的主要评估指标。定期进行视网膜 OCT 扫描有助于早期发现任何与视网膜相关的疾病,并可在年老时避免 [9]。如果在身体中检测到视网膜疾病,许多大脑、眼睛和心血管系统疾病都已出现。通过 OCT 扫描还可以检测到各种其他疾病,患有糖尿病的人患糖尿病视网膜病变的几率很高,而且任何类型的黄斑水肿也可以在视网膜 OCT 图像中看到。本研究主要关注脉络膜新生血管 (CNV),它是发达国家失明的主要原因之一。通俗地说,脉络膜新生血管可以定义为视网膜脉络膜层中额外血管的生成。同一脉络膜层的最内层称为 Brunch 膜 (BM),任何类型的膜损伤都可能导致视网膜脉络膜新生血管,并导致未来失明。近年来,深度学习在医学图像中对患病和未患病图像进行分类的应用有所增加。事实证明,CNN 等深度学习技术在物体检测、图像识别和分割方面也大有用处。因此,这证明了使用深度学习分析 OCT 图像以获取患病图像的重要性。使用深度学习 Vgg16 和 DenseNet 的最新架构对患病图像的预测进行比较。然后分割患病图像以突出显示视网膜层中具有脉络膜新生血管的增强血管和空洞形成 [6]。 * 通讯作者:MS Abirami,abirami.srm@gmail.com
ABSTRAK ............................................................................................................ vii
DNA甲基化提供了将遗传变异与环境影响联系起来的关键表观遗传标记。我们已经分析了160个人视网膜的基于阵列的DNA甲基化蛋白纤维,具有共同测量的RNA-SEQ和> 800万个遗传变异,在CIS中揭示了遗传调节的位点,在CIS中(37,453个甲基化的定量性状定量特征和12,505表达定量的特性特征)和13,747 DNA甲基化的属性。视网膜特定的三分之一。甲基化和表达定量性状基因座表现出与突触,线粒体和分解代谢有关的生物过程的非随机分布和富集。基于数据的Mendelian ran统治和共定位分析确定了87个靶基因,其中甲基化和基因表达变化可能介导基因型对年龄相关的黄斑变性的影响。综合途径分析揭示了免疫反应和代谢的表观遗传调节,包括谷胱甘肽途径和糖酵解。我们的研究定义了驱动甲基化变化的遗传变异的关键作用,优先考虑基因表达的表观遗传控制,并提出了通过基因型 - 视网膜环境相互作用来调节黄斑变性病理学的框架。
摘要:CRISPR/Cas 系统的发现及其发展成为强大的基因组工程工具,彻底改变了分子生物学领域,并激发了人们对其治疗多种人类疾病的潜力的兴奋。作为基因治疗靶点,视网膜由于其手术可及性和由于其血视网膜屏障而具有的相对免疫优势,比其他组织具有许多优势。这些特点解释了过去十年眼部基因治疗取得的巨大进展,包括首次使用 CRISPR 基因编辑试剂的体内临床试验。尽管病毒载体介导的治疗方法取得了成功,但它们有几个缺点,包括包装限制、预先存在的抗衣壳免疫和载体诱导的免疫原性、治疗效力和持久性以及潜在的遗传毒性。纳米材料在治疗剂输送中的应用彻底改变了遗传物质输送到细胞、组织和器官的方式,并提供了一种有吸引力的替代方案来绕过病毒输送系统的局限性。在这篇综述中,我们探讨了非病毒载体作为基因治疗工具的潜在用途,探索了纳米技术在医学领域的最新进展,并重点研究了纳米粒子介导的 CRIPSR 基因货物向视网膜的递送。
基于深度学习算法的计算机辅助诊断系统已显示出糖尿病性视网膜病快速诊断(DR)的潜在应用。由于变压器的出色表现而不是自然图像上的卷积神经网络(CNN),因此我们尝试开发一种新模型,以使用变压器使用有限数量的大型视网膜图像来对引用的DR进行分类。在本研究中应用了带有蒙版自动编码器(MAE)的视觉变压器(VIT),以提高参考DR的分类性能。我们收集了超过224×224的100,000张公共底面的视网膜图像,然后使用MAE在这些视网膜图像上进行了预训练的VIT。将预训练的VIT应用于对引用的DR进行分类,还将性能与使用ImageNet的VIT预先训练的性能进行了比较。通过使用MAE进行超过100,000个视网膜图像预先培训,模型分类性能的改善优于预先训练的Ima-Genet。本模型的精度,曲线下的面积,最高灵敏度和最高特异性分别为93.42%,0.9853、0.973和0.9539。本研究表明,MAE可以为输入图像提供更大的灵活性,并大大减少所需图像的数量。同时,这项研究中的预处理数据集量表比ImageNet小得多,并且不需要ImageNet的预训练权重。
✉ Maria B. Grant mariagrant@uabmc.edu。Chao Huang 和 Robert Follett Rosencrans 对这项工作做出了同等贡献。作者关系和活动作者声明,不存在任何可能对其工作产生偏见或被认为会偏见的关系或活动。贡献声明 CH 管理所有实验和数据收集并编辑了手稿。RFR 收集了代谢数据并撰写了手稿。RB 进行了立体定向手术。PH 进行了组织处理和免疫组织化学分析。YA-A 进行了视动和 ERG 记录,CPV 和 ALFL 协助进行了流式细胞术和骨髓功能测定。GML、PMF 和 KLG 协助进行了实验设计。所有作者都对数据的获取和分析做出了贡献。所有作者都对手稿的重要知识内容进行了批判性修改,并批准了手稿的最终版本。MBG 构思了实验、获得了资金、设计了实验、协助进行了数据解释、编辑了手稿并且是手稿中所有数据的担保人。
与哺乳动物相比,斑马鱼可以再生其受损的感光体。这种能力取决于MüllerGlia(Mg)的内在可塑性。在这里,我们确定了转基因记者Careg是重生和心脏的标志,也参与了斑马鱼的视网膜恢复。甲基硝基库(MNU)处理后,视网膜变质并包含受损的细胞类型,包括杆,紫外线敏感锥和外丛状层。该表型与Mg子集中的Careg表达诱导有关,直到光感受器突触层的重建为止。单细胞RNA测序(SCRNASEQ)对再生视网膜的分析表明,未成熟的棒群,通过高淡有关蛋白的高表达和纤毛生成基因MEIG1的定义,但光转导基因的表达较低。此外,锥体对视网膜损伤的反应显示了对代谢和视觉感知基因的放松管制。CAREG:EGFP表达和非表达MG之间的比较表明,这两个亚群的特征是不同的分子特征,表明它们对再生程序的异源反应性。核糖体蛋白S6磷酸化的动力学表明,TOR信号逐渐从MG转换为祖细胞。用雷帕霉素抑制TOR可以降低细胞周期活性,但既不影响CAREG:MG中的EGFP表达,也没有阻止恢复视网膜结构。这表明MG重编程和祖细胞增殖可能受不同的机制调节。总而言之,Careg Reporter检测到活化的MG,并在包括视网膜在内的各种斑马器官中提供了竞争能力的细胞的共同标记。
作为他在世界范围内传播玻璃体切除术的知识和实践的重要组成部分,曼德科恩博士在多伦多大学创造了一个新颖的学习机会,用于培训来自世界各地的视网膜外科医生的培训,以一对一的短期基础,以升级其技能和视网膜练习的技能和范围,以包括玻璃体切除术手术。这是一种非常成功的创新短期奖学金安排,可以更快,更有效地传播玻璃体切除术知识和技术。教学手术技术的通常方法是在视网膜手术中进行1或2年的研究金。通过向全球实践视网膜外科医生提供这种个性化的短期手术玻璃体切除术研究金,这些外科医生已经在其他更常规的非抗衰测视网膜手术中胜任,这一革命性的视网膜手术的好处在全球范围内更快地实现了。除了培训许多加拿大,英国和美国视网膜外科医生外,Mandelcorn博士还培训了来自世界各地的视网膜外科医生,正如以下部分列表所述。