为什么基因检测很重要?识别疾病的遗传原因是IRD患者护理的重要组成部分。很多次,一个人的确切类型很难仅根据眼科医生办公室进行的测试来确定。基因检测结果将导致准确的诊断。拥有遗传诊断将有助于确定患者的潜在治疗选择,告知他们对其他家庭成员的潜在疾病风险,并确定可能受到影响的患者体内其他器官的潜在风险。对于婴儿和幼儿,基因检测将确定那些面临其他健康问题并将从早期诊断和治疗中受益的儿童。医疗保健提供者将订购基因测试,收集样本并与患者一起检查结果。医疗保健提供者还可能包括遗传咨询师,通过基因测试的结果来指导患者及其家人,讨论对其他家庭成员的影响,并指导夫妇在未来的计划生育决策中。
1哈佛医学院神经生物学系,马萨诸塞州波士顿220 Longwood Ave. 02115 2 Dominick P. Purpura神经科学系,艾伯特·爱因斯坦医学院,纽约州布朗克斯市1300 Morris Park Avenue,NY 10461 300神经科学,阿尔伯特·爱因斯坦医学院,纽约州布朗克斯市莫里斯公园大道1300神经科学,阿尔伯特·爱因斯坦医学院,纽约州布朗克斯市莫里斯公园大道1300
1 伦敦国王学院精神病学、心理学和神经科学研究所法医和神经发育科学系,伦敦 SE5 8AF,英国,2 伦敦国王学院精神病学、心理学和神经科学研究所转化神经发育研究所,伦敦 SE5 8AF,英国,3 广州琶洲实验室脑机接口研究中心,510665,中国,4 摩尔菲尔德眼科医院 NHS 基金会信托,伦敦 EC1V 2PD,英国,5 科英布拉大学生物医学成像和转化研究研究所 (CIBIT) 健康应用核科学研究所 (ICNAS),科英布拉 3000-548,葡萄牙,6 香港教育大学心理学系,香港,中国,7 伦敦国王学院 MRC 神经发育障碍中心,伦敦 SE1 1UL,英国英国、8 伦敦大学学院眼科研究所,伦敦 WC1E 6BT,英国、9 伦敦国王学院圣托马斯医院眼科,伦敦 SE1 7EH,英国、10 威尔斯眼科医院转化眼科系,宾夕法尼亚州费城 19107
摘要:视网膜是一种对视觉感知至关重要的中枢神经组织,并且非常容易受到环境损害。下脊椎动物视网膜下部激活内在再生机制,以应对由祖细胞专业人群调节的视网膜损伤。哺乳动物视网膜没有可用于激活再生的祖细胞/干细胞的群体,但包含可以将分化细胞的亚种群重新编程为可以将其重编程为视网膜干细胞的纤毛上皮细胞(CE)细胞。尽管具有再生潜力,但衍生自CE的干细胞表现出有限的重编程能力,可能与固有调节机制的表达有关。血小板激活因子(PAF)是在许多细胞中广泛表达的脂质介体,在干细胞增殖和分化中起重要作用。在哺乳动物发育过程中,PAF受体信号传导对视网膜祖细胞周期调节和神经元分化的重要作用,需要进一步研究。在这项研究中,我们的发现提出了CE细胞中PAF受体信号传导的动态作用,从而影响了干细胞特征和神经圈形成。我们表明,在衍生自PE细胞的视网膜祖细胞/干细胞中,PAF受体和与PAF相关的酶被下调。使用拮抗剂阻断PAFR活性增加了特定祖细胞标记的表达,从而揭示了对视网膜组织发育和维持的潜在影响。
摘要:人类感光细胞的功能依赖于高度特化的纤毛。纤毛功能的紊乱通常会导致感光细胞死亡和视力丧失。视网膜纤毛病是一种遗传多样性的视网膜遗传病,会影响感光细胞纤毛的各个方面。尽管利用动物疾病模型对视网膜纤毛病的理解取得了进展,但它们往往无法准确模拟观察到的患者表型,这可能是由于结构和功能与人类视网膜存在偏差。人类诱导多能干细胞 (hiPSC) 可用于生成替代疾病模型,即 3D 视网膜类器官,其中包含所有主要的视网膜细胞类型,包括带有纤毛结构的感光细胞。这些视网膜类器官有助于研究人类衍生系统中的疾病机制和潜在疗法。三维视网膜类器官仍是一项发展中的技术,尽管取得了令人瞩目的进展,但仍存在一些局限性。本综述将讨论 hiPSC 衍生的视网膜类器官技术现状,该技术可准确模拟与基因(包括 RPGR 、 CEP290 、 MYO7A 和 USH2A )相关的主要视网膜纤毛病。此外,我们还将讨论针对视网膜纤毛病的新型基因治疗方法的开发,包括大基因的传递和基因编辑技术。
摘要:青光眼是一种高度危险的眼部疾病,可显着影响人类视力。这是一种视网膜状况,会损害视神经头(ONH),如果在后期发现,可能会导致永久失明。预防永久性失明取决于青光眼在其初始阶段的及时识别和干预。本文介绍了卷积神经网络(CNN)模型,该模型利用特定的建筑设计来通过分析底面图像来识别早期青光眼。这项研究利用了公开访问的数据集,包括用于青光眼分析和研究的在线视网膜底面图像数据库(ORIGA),视网膜的结构化分析(凝视)和视网膜眼底青光眼挑战(避难所)。为了对青光眼进行分类,视网膜底面图像被送入Alexnet,VGG16,Resnet50和InceptionV3模型中。RESNET50和InceptionV3模型都证明了出色的性能,以创建混合模型。ORIGA数据集以97.4%的F1得分达到了高精度,而凝视数据集则获得了更高的精度,而F1分数为99.1%。避难数据集也表现出色,F1得分为99.2%。所提出的方法已经建立了可靠的青光眼诊断系统,帮助眼科医生和医生进行准确的质量筛查和诊断青光眼。
这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的归属。
1田纳西大学健康科学中心医学院药理学,成瘾科学和毒理学系,美国田纳西州38163; johane.boff@uthsc.edu(J.M.B。 ); drabhishekshrestha@gmail.com(A.P.S.) 2田纳西大学健康科学中心医学院,美国田纳西州38163,美国; smadired@uthsc.edu 3田纳西大学健康科学中心医学院医学教育系,美国田纳西州38163,美国; nviswapr@uthsc.edu 4验光学院,休斯顿大学,休斯顿大学,美国德克萨斯州77204,美国5眼科学系,汉密尔顿眼科研究所,田纳西大学健康科学中心,孟菲斯,美国田纳西州38163,美国田纳西州38163 ); tveaithia@uthsc.edu(t.v. );电话。 : +1-713-743-9157(L.D.S. ); +1-901-448-2786(T.V.) †这些作者为这项工作做出了同样的贡献。1田纳西大学健康科学中心医学院药理学,成瘾科学和毒理学系,美国田纳西州38163; johane.boff@uthsc.edu(J.M.B。); drabhishekshrestha@gmail.com(A.P.S.)2田纳西大学健康科学中心医学院,美国田纳西州38163,美国; smadired@uthsc.edu 3田纳西大学健康科学中心医学院医学教育系,美国田纳西州38163,美国; nviswapr@uthsc.edu 4验光学院,休斯顿大学,休斯顿大学,美国德克萨斯州77204,美国5眼科学系,汉密尔顿眼科研究所,田纳西大学健康科学中心,孟菲斯,美国田纳西州38163,美国田纳西州38163 ); tveaithia@uthsc.edu(t.v. );电话。 : +1-713-743-9157(L.D.S. ); +1-901-448-2786(T.V.) †这些作者为这项工作做出了同样的贡献。2田纳西大学健康科学中心医学院,美国田纳西州38163,美国; smadired@uthsc.edu 3田纳西大学健康科学中心医学院医学教育系,美国田纳西州38163,美国; nviswapr@uthsc.edu 4验光学院,休斯顿大学,休斯顿大学,美国德克萨斯州77204,美国5眼科学系,汉密尔顿眼科研究所,田纳西大学健康科学中心,孟菲斯,美国田纳西州38163,美国田纳西州38163); tveaithia@uthsc.edu(t.v.);电话。: +1-713-743-9157(L.D.S.); +1-901-448-2786(T.V.)†这些作者为这项工作做出了同样的贡献。
摘要:视网膜色素变性 GTPase 调节剂 (RPGR) 基因内的变异是 X 连锁视网膜色素变性 (XLRP) 的主要原因,XLRP 是一种常见且严重的遗传性视网膜疾病。XLRP 的特征是光感受器的逐渐退化和丧失,导致视力丧失,并最终导致双侧失明。不幸的是,目前尚无针对 RPGR 相关 XLRP 的有效批准治疗方法。我们试图使用临床相关构建体研究 RPGR ORF15 基因补充在人类 RPGR 缺陷型视网膜类器官 (RO) 中的有效性。使用针对 RPGR 的成熟 CRISPR/Cas9 基因编辑方法生成同源 RPGR 敲除 (KO) 诱导的多能干细胞 (IPSC)。RPGR-KO 和同源野生型 IPSC 分化为 RO,并用于测试腺相关病毒 (AAV) RPGR (AAV-RPGR) 临床载体构建体。使用 AAV-RPGR 转导 RPGR-KO RO 成功恢复了 RPGR mRNA 和蛋白质的表达,并定位到杆状和锥状感光细胞中的感光连接纤毛。载体衍生的 RPGR 显示出与 WT RO 相同的谷氨酰化水平。此外,用 AAV-RPGR 治疗可恢复 RPGR-KO RO 内的视紫红质定位,从而减少对感光外核层的错误定位。这些数据提供了对 RPGR ORF15 基因补充在人类感光细胞中的功能效力的机制见解,并支持了之前报道的在 RPGR 相关 XLRP 患者中使用该载体构建体进行的 I/II 期试验的积极结果,该载体构建体目前正在进行 III 期临床试验。