介绍了当前通过显示屏或头戴式显示器提供增强现实的方法。其中包括一系列技术,介绍了每种技术应用于 RETINA 概念的优缺点。对列出的各种技术进行了分析,以从人为因素的角度研究每种技术的人体工程学可行性以及风险和益处。还包括在标准和低能见度条件下从控制塔提供 ATC 服务的任务分析,重点关注 RETINA 概念将如何影响它们。本次审查将为 WP2 中要开发的合成视觉系统和概念提出操作要求。
神经代码的变化使每个个体都独一无二。我们使用来自猕猴视网膜中主要神经节细胞类型的 100 个群体记录,结合可解释的个体变异计算表示,探测了神经代码的变化。这种表示捕捉了非线性、时间动态和空间感受野大小等属性的变化和共变,并保留了开细胞和关细胞之间不对称等不变性。不同细胞类型中响应属性的共变与其突触输入的层压接近度有关。令人惊讶的是,男性视网膜比女性视网膜表现出更高的放电率和更快的时间整合。利用以前记录的视网膜数据可以有效地表征新的猕猴视网膜和人类视网膜。模拟表明,将大量视网膜记录与行为反馈相结合可以揭示活体人类的神经代码,从而改善视网膜植入物的视力恢复。
遗传性视网膜营养不良 [IRD] 是导致严重视力丧失的常见原因,这种视力丧失是由致病性基因变异引起的。眼睛是测试遗传性疾病临床转化方法的理想靶器官。4 年前,第一种治疗常染色体隐性 IRD、RPE65 连锁莱伯先天性黑蒙(2 型)的基因补充疗法获得批准,证明了这一点。然而,并非所有疾病都适合使用基因补充疗法治疗,这凸显了需要采用替代策略来克服这种补充治疗方式的局限性。随着 CRISPR-Cas9 平台的发现,基因编辑越来越受到关注。与以前的基因编辑技术相比,CRISPR-Cas9 具有多种优势,因为它可以以高效、特定和可修改的方式促进靶向基因编辑。CRISPR-Cas9 研究的进展意味着基因编辑是治疗 IRD 的可行策略。本综述将重点介绍 CRISPR-Cas9 的背景,并强调使用 CRISPR-Cas9 进行基因编辑与传统基因补充疗法之间的差异。此外,我们将回顾导致首次 CRISPR-Cas9 试验的研究,该试验用于治疗 CEP290 相关的莱伯先天性黑蒙症(10 型),并概述 CRISPR-Cas9 技术在治疗 IRD 方面的未来方向。
摘要:小胶质细胞是中枢神经系统(CNS)和视网膜中居民免疫细胞的重要种群。这些微观细胞具有亚细胞过程,由于分辨率和对比度有限,它们使它们在图像方面具有挑战性。生命视网膜中小胶质过程的基线行为的特征很差,但对于了解这些细胞在健康,发育,压力和疾病条件下的反应至关重要。在这里,我们使用体内自适应光学扫描光眼镜扫描,结合了延时成像和过程运动的定量,以揭示健康小鼠群体中小胶质细胞的详细行为。我们发现小胶质细胞过程在所有分支水平上都是动态的,从主质量到终端细胞园。平均速度为0.6±0.4 µm/min,生长和缺失爆发为0–7.6 µm/min,重塑细胞处理。在同一只小鼠中的纵向成像显示细胞 - 索马斯在几秒钟到几分钟内保持稳定,但在几天到几个月内显示出迁移。除了使用小胶质细胞小鼠的体内过程运动和SHOLL分析表征外,我们还证明了无荧光标签的小胶质细胞可以成像。使用安全水平的近红外光的相对对比成像成功成像的小胶质细胞体并用微观级别的细节进行过程重塑,并通过同时对转基因小鼠的荧光小胶质细胞进行成像证实。此外,现在可以进行CNS小胶质细胞研究,而无需颅窗手术,而颅窗手术可能会因局部或全身性炎症而改变其行为。这种无标签方法提供了一个新的机会,可以无创地研究CNS免疫系统,而无需转基因或抗体标记,这可能会带来改变正常小胶质行为的靶向效果。
摘要α1,3-羟基转移酶9(FUT9)负责Lewis X [Le X,Galβ1-4(FUCα1-3)Glcnac]碳水化合物表位的合成,这是多能或多元组织特异性干细胞的标记。尽管未缺乏的小鼠表现出与焦虑相关的行为,但大脑中的结构和细胞异常仍有待研究。在这项研究中,使用原位杂交和免疫组织化学技术结合使用,我们在大脑和视网膜中阐明了FUT9的时空表达以及Le X的时空表达。我们发现表达FUT9的细胞对CTIP2是阳性的,CTIP2是位于V/VI层中的神经元的标记,而TLE4是Cortex的VI层的皮质丘脑投影神经元(CTHPN)的标记。在胚胎日(E)11.5,5-溴-2--脱氧尿苷在E12.5时使用5-乙基甲尿尿苷(E),在e14.5处于E14.5的GFP表达质粒的子宫倍孔中,在E14.5降低了E1.5的VIIN中,E14.5在E14.5中,E14.5的gfp表达质粒的静脉外,E12.5的UTERO电穿孔中,E14.5在E14.5中均在E14.5中,在E14.5中,E14.5在E14.5中,E14.5在E14.5中,E14.5在E14.5中,在E14.5中, 。 P0 FUT9 - / - 小鼠中的视网膜的神经节细胞层。 此外,层VI/子板神经元的这种减少持续到成年期,导致CTIP2强/SATB2的数量减少 - 成人FUT9 - / - Cortex的V/VI中的兴奋性神经元。 这些结果表明FUT9在皮质和视网膜中神经前体细胞的分化,迁移和成熟中起着重要作用。。 P0 FUT9 - / - 小鼠中的视网膜的神经节细胞层。 此外,层VI/子板神经元的这种减少持续到成年期,导致CTIP2强/SATB2的数量减少 - 成人FUT9 - / - Cortex的V/VI中的兴奋性神经元。 这些结果表明FUT9在皮质和视网膜中神经前体细胞的分化,迁移和成熟中起着重要作用。。 P0 FUT9 - / - 小鼠中的视网膜的神经节细胞层。 此外,层VI/子板神经元的这种减少持续到成年期,导致CTIP2强/SATB2的数量减少 - 成人FUT9 - / - Cortex的V/VI中的兴奋性神经元。 这些结果表明FUT9在皮质和视网膜中神经前体细胞的分化,迁移和成熟中起着重要作用。。 P0 FUT9 - / - 小鼠中的视网膜的神经节细胞层。 此外,层VI/子板神经元的这种减少持续到成年期,导致CTIP2强/SATB2的数量减少 - 成人FUT9 - / - Cortex的V/VI中的兴奋性神经元。 这些结果表明FUT9在皮质和视网膜中神经前体细胞的分化,迁移和成熟中起着重要作用。。 P0 FUT9 - / - 小鼠中的视网膜的神经节细胞层。此外,层VI/子板神经元的这种减少持续到成年期,导致CTIP2强/SATB2的数量减少 - 成人FUT9 - / - Cortex的V/VI中的兴奋性神经元。这些结果表明FUT9在皮质和视网膜中神经前体细胞的分化,迁移和成熟中起着重要作用。
摘要:随着对沉浸式体验的需求的增长,显示器的大小和更高的分辨率越来越接近眼睛。但是,缩小像素发射器降低了强度,使其更难感知。电子纸利用环境光进行可见性,无论像素大小如何,都可以保持光学对比度,但无法实现高分辨率。我们显示了由WO 3纳米散件组成的大小至〜560 nm的电气可调节元像素,当显示大小与瞳孔直径匹配时,可以在视网膜上进行一对一的像素 - 示波器映射,我们将其称为视网膜电子纸。我们的技术还支持视频显示(25 Hz),高反射率(〜80%)和光学对比度(〜50%),这将有助于创建最终的虚拟现实显示。主要文本:从电影屏幕和电视到智能手机以及虚拟现实(VR)耳机,显示器逐渐越来越靠近人眼,具有较小的尺寸和更高的分辨率。随着展示技术的进步,出现了一个基本问题:显示大小和分辨率的最终限制是什么?如图1a,为了获得最沉浸和最佳的视觉体验,该显示应与人瞳孔的尺寸紧密匹配,每个像素与视网膜中的光感受器单元相对应。人类视网膜包含约1.2亿光感受器细胞。假设瞳孔直径为8毫米,理想的像素大小为〜650 nm,导致分辨率约为每英寸40,000像素(PPI)。随着像素尺寸收缩,主流发射显示器正在接近其物理极限。这个理论像素大小接近人眼的分辨率极限,代表了显示技术的最终边界,我们将其命名为“视网膜”显示。较小的像素尺寸降低了发射极尺寸,从而导致亮度显着下降,从而使它们越来越难以通过肉眼感知(1,2)。当前,市售的智能手机显示像素通常约为60×60μm²(〜450 ppi),比最终视网膜显示所需的理论尺寸大约10,000倍。已经在这个规模上,肉眼很难感知,尤其是在
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2021年6月25日发布。 https://doi.org/10.1101/2021.06.24.449775 doi:biorxiv preprint
双眼立体视觉依赖于两个半球视网膜之间的成像差异,这对于在三维环境中获取图像信息至关重要。因此,与生物眼的结构和功能相似性的视网膜形态电子始终非常需要发展立体视觉感知系统。在这项工作中,开发了基于Ag-Tio 2纳米簇/藻酸钠纤维的半球光电磁带阵列,以实现双眼立体视觉。由等离子热效应引起的全光调制和Ag-Tio 2纳米群体中的光激发,以实现像素内图像传感和存储。广泛的视野(FOV)和空间角度检测是由于设备的排列和半球形几何形状的入射角依赖性特征而在实验上证明的。此外,通过构造两个视网膜形态的恢复阵列,已经实现了基于双眼差异的深度感知和运动检测。这项工作中证明的结果提供了一种有希望的策略,以开发全面控制的回忆录,并促进具有传感器内架构的双眼视觉系统的未来发展。
甲状腺激素 (TH) 稳态失调与急性和长期疾病的预后不良有关,但其在糖尿病视网膜病变 (DR) 中的作用尚未被研究过。在这里,我们表征了 db/db 小鼠视网膜中的 TH 系统并强调了 MIO-M1 细胞中的调节过程。在 db/db 视网膜中,DR 的典型功能特征和分子特征与组织限制性的 TH 水平降低相伴而生。还证实了局部低 T3 (LT3S) 状况,这可能是由脱碘酶 3 (DIO3) 上调以及 DIO2 和 TH 受体表达降低引起的。同时,T3 反应基因,包括线粒体标志物和微小 RNA(miR-133-3p、338-3p 和 29c-3p),被下调。在 MIO- M1 细胞中,存在反馈调节回路,其中 miR-133-3p 以 T3 依赖的方式触发 DIO3 的转录后抑制,而高葡萄糖 (HG) 通过核因子红细胞 2 相关因子 2 - 缺氧诱导因子 1 途径导致 DIO3 上调。最后,体外模拟早期 LT3S 和高血糖状态与线粒体功能和应激反应标志物减少相关,而 T3 替代可逆转这一情况。总之,数据表明,在 DR 的早期阶段,DIO3 驱动的 LT3S 可能对视网膜应激有保护作用,而在慢性期,它不仅无法限制 HG 引起的损伤,而且还可能由于持续的线粒体功能障碍而增加细胞脆弱性。
ELEVATUM 临床试验 (NCT05224102)。a 在基线访视(即首次研究治疗当天)前 28 天内进行筛查。如果需要 > 28 天,筛查期可延长最多 5 个工作日。b 如果患者在第 56 周完成 SFV,则视为已完成研究。提前(第 56 周之前)退出研究或治疗的患者应在最后一次研究治疗后 ≥ 28 天返回接受 ETV。BCVA,最佳矫正视力;CST,中央亚区厚度;DME,糖尿病性黄斑水肿;ETDRS,早期治疗性糖尿病视网膜病变研究;ETV,提前终止访视;Q8W,每 8 周一次;SFV,安全性随访访视。