将非线性数据建模为Riemannian歧管上的对称阳性定义(SPD)矩阵,引起了对各种分类任务的广泛关注。在深度学习的背景下,基于SPD矩阵的Riemannian网络已被证明是对电子脑电图(EEG)信号进行分类的有前途的解决方案,可在其结构化的2D特征表示中捕获Riemannian几何形状。但是,现有方法通常在嵌入空间中学习所有可用的脑电图中的空间结构,其优化程序依赖于计算 - 昂贵的迭代。此外,这些十种方法努力将所有类型的关系船编码为单个距离度量标准,从而导致一般性丧失。为了解决上述局限性,我们提出了一种riemannian嵌入银行方法,该方法将整个填充空间中常见的空间模式学习的概率分为k个缩写,并为每个子问题构建一个模型,与SPD Neural Net-net Works结合使用。通过利用Riemannian歧管上的“独立学习”技术的概念,Reb将数据和嵌入空间划分为k非重叠子集中,并在Riemannian ge-be-emetric Space中学习K单独的距离指标,而不是向量空间。然后,在SPD神经网络的嵌入层中,学习的K非重叠子集分为神经元。公共脑电图数据集的实验结果证明了尽管非平稳性质,但提出的脑电图信号的常见空间模式的拟议方法的优越性,在维持概括的同时提高了收敛速度。
摘要。大脑计算机接口(BCI)通过脑电图(EEG)信号实现大脑和外部机器之间的通信,这引起了很多关注。基于运动图像的BCI(MI-BCI)是BCI领域中最重要的范例之一。在Mi-BCI中,可以使用机器学习算法有效地识别运动意图的目标肢体。作为用于电机图像解码的典型机器学习算法,基于Riemannian的内核支持向量机(RK-SVM)算法无法从多频段中提取功能,从而限制了其性能。为了解决此问题,提出了将滤波器基于Riemannian的内核支持向量机(FBRK-SVM)方法,该方法结合了过滤器库结构和基于Riemannian的内核。在两个常用的公共数据集的比较实验中,发现所提出的算法可以产生更高的解码性能,这为运动成像的分类提供了新的选择。
方法:在目前的工作中,我们引入了拉普拉斯矩阵,以将功能连接特征(即相位锁定值(PLV),Pearson相关系数(PCC),频谱相干(COH)和共同信息(MI)转换为半阳性运营商,以确保转换为正面的功能。然后,使用SPD网络来提取深空信息,并采用完全连接的层来验证提取特征的效果。,决策层融合策略用于实现更准确和稳定的识别结果,并研究了不同特征组合的分类性能的差异。更重要的是,还研究了应用于功能连接功能的最佳阈值。
基于脑电图 (EEG) 的脑机接口 (BCI) 通常被认为是针对运动障碍用户的有前途的辅助技术,但由于在现实生活中的可靠性低,在实验室外仍很少使用。因此,需要设计可供最终用户(例如严重运动障碍者)在实验室外使用的长期可靠的 BCI。因此,我们提出并评估了一种基于多类心理任务 (MT) 的 BCI 设计,用于为 CYBATHLON BCI 系列 2019 的四肢瘫痪用户进行纵向训练(3 个月内 20 次训练)。在本次 BCI 锦标赛中,四肢瘫痪的飞行员在赛车游戏中用精神驾驶虚拟汽车。我们旨在将渐进式用户 MT-BCI 训练与基于自适应黎曼分类器的新设计的机器学习流程相结合,该分类器已被证明有望在现实生活中应用。我们遵循两步训练过程:前 11 个课程用于训练用户通过执行两个认知任务(休息和心理减法)或两个运动想象任务(左手和右手)来控制 2 类 MT-BCI。第二个训练步骤(剩余 9 个课程)应用了自适应、独立于会话的黎曼分类器,该分类器结合了之前使用的所有 4 个 MT 类别。此外,由于我们的黎曼分类器以无监督的方式逐步更新,因此它将捕获会话内和会话之间的非平稳性。实验证据证实了这种方法的有效性。也就是说,与初始课程相比,训练结束时的分类准确率提高了约 30%。我们还研究了这种性能改进的神经相关性。使用新提出的 BCI 用户学习指标,我们可以显示我们的用户学会了通过产生越来越匹配 BCI 分类器训练数据分布的 EEG 信号来改善他的 BCI 控制,而不是通过改善他的 EEG 类别辨别。然而,由此产生的改进只对同步(基于提示)BCI 有效,并没有转化为 CYBATHLON BCI 游戏性能的提高。为了克服这个问题
摘要 — 使用卡尔曼滤波器 (KF) 进行状态估计经常会遇到未知或经验确定的协方差矩阵,从而导致性能不佳。消除这些不确定性的解决方案正在向基于 KF 与深度学习方法混合的估计技术开放。事实上,从神经网络推断协方差矩阵会导致强制对称正定输出。在本文中,我们探索了一种新的循环神经网络 (RNN) 模型,该模型基于黎曼对称正定 (SPD) 流形的几何特性。为此,我们基于黎曼指数图定义了一个神经元函数,该函数取决于流形切线空间上的未知权重。这样,就推导出了一个黎曼成本函数,从而能够使用传统的高斯-牛顿算法将权重作为欧几里得参数进行学习。它涉及计算闭式雅可比矩阵。通过对模拟协方差数据集进行优化,我们展示了这种新方法对于 RNN 的可能性。
探地雷达 (GPR) 是一种成像系统,可用于观察现场地下情况,以研究土壤的层组成或埋藏物体的存在。由于地面的电磁特性,此类图像通常具有非常低的信噪比 (SNR)。此外,根据设计,埋藏物体被观察为双曲线,其形状可能与物体类型(例如空腔或管道)相关联。在这种情况下,埋藏物体的分类在民用应用中非常重要,例如恢复埋藏天然气管道的位置 [1] 或军事应用,例如地雷探测 [2]。为了进行这种识别,一些研究考虑使用信号反演技术 [3] 来提高 SNR,以便地球物理学家进行手动解释。当需要处理大量图像时,这种解决方案可能不切实际,因为它需要专门的人力资源。因此,自动识别方法已成为必需,并受到社区的关注。GPR 信号的自动分类分两步进行。首先,感兴趣区域(ROI)对应于
摘要:情绪识别对于理解人类情感状态具有重要意义,具有多种应用。脑电图 (EEG) 是一种捕捉大脑活动的非侵入性神经成像技术,在情绪识别方面引起了广泛关注。然而,现有的基于 EEG 的情绪识别系统仅限于特定的感觉模式,阻碍了它们的适用性。我们的研究创新了 EEG 情绪识别,提供了一个全面的框架来克服感觉聚焦限制和跨感觉挑战。我们使用多模态情绪模拟(三种感觉模式:音频/视觉/视听,两种情绪状态:愉悦或不愉悦)收集跨感觉情绪 EEG 数据。所提出的框架——滤波器组对抗域自适应黎曼方法 (FBADR)——利用滤波器组技术和黎曼切线空间方法从跨感觉 EEG 数据中提取特征。与黎曼方法相比,滤波器组和对抗域自适应可以分别提高 13.68% 和 8.36% 的平均准确率。分类结果的比较分析证明,所提出的 FBADR 框架实现了最先进的跨感官情感识别性能,平均准确率达到 89.01% ± 5.06%。此外,所提出方法的稳健性可以确保在信噪比 (SNR) ≥ 1 dB 下具有较高的跨感官识别性能。总的来说,我们的研究为基于 EEG 的情感识别领域做出了贡献,提供了一个全面的框架,克服了感官导向方法的局限性,并成功解决了跨感官情况的困难。
代码调制视觉诱发电位 (cVEP) 在脑机接口 (BCI) 社区中越来越受欢迎 [1]。这种方法采用伪随机视觉闪烁,具有校准时间短等优势,因为只需要学习一个代码。其他解码方法,如按位解码 [2],已经实现了具有灵活解码周期的自定节奏 BCI。尽管取得了这些进步,但基于 cVEP 的 BCI 仍然主要在实验室环境中进行研究,因为每次使用前都需要重新校准。这一限制与所有 BCI 范式共有的跨会话和跨受试者差异有关。BCI 的这些差异源多种多样 [3],包括解剖学差异(例如灰质数量变化)、人为因素(例如教育水平和生活习惯差异)或生理因素(例如疲劳、注意力水平和压力水平)。此外,神经生理学差异(例如特定频率范围内频谱功率调制的变化)也会导致这些变化。为了解决这些变化源,人们进行了广泛的研究 [4, 3] 以提出新方法。评估迁移学习方法有两种主要设置,具体取决于目标对象可用的信息量。在最独立的设置中,称为领域泛化,没有来自目标对象的信息,因此模型是在数据上进行训练的
摘要 — 众所周知,考虑用户特定设置可以增强脑机接口 (BCI) 的性能。特别是,振荡活动分类的最佳频带高度依赖于用户,过去二十年已经开发了许多频带选择方法。然而,这些传统方法是否可以有效地应用于黎曼 BCI 尚未得到很好的研究,黎曼 BCI 是一类新兴的 BCI 系统,与传统 BCI 管道不同,它利用了数据的非欧几里得性质。在本文中,我们提出了一种基于黎曼流形的新型频带选择方法。选择频带时,考虑到基于流形上的类间距离和类内方差量化的类独特性。该方法的一个优点是可以针对每个人调整频带,而无需进行密集的优化步骤。在使用基于运动想象的 BCI 公共数据集的比较实验中,我们的方法比固定宽频带和流行的传统频带选择方法的平均准确率有显著提高。尤其是,我们的方法显著提高了最初准确度较低的受试者的表现。这一初步结果表明,开发考虑流形属性的新用户特定设置算法的重要性,而不是直接应用在黎曼 BCI 兴起之前开发的方法。
自从发现 [1,2] 以来,EEG 已越来越多地应用于基础研究、临床研究和工业研究。针对每个领域,都陆续开发出了特定的工具。这些工具包括:(i) 利用微电极进行脑内记录 [3,4],该方法可以识别 EEG 信号的神经元来源,并更好地理解 EEG 活动的生理机制;(ii) 大平均法,包括由重复事件 (视觉、听觉、体感……) 触发的一系列试验的平均值 [5],该方法开启了诱发相关电位 (ERP) 领域的研究,最近包括 EEG 源发生器 [8–10] 在内的 EEG 动力学工具 [6,7] 丰富了这一研究领域; (iii) 将 EEG 用于神经反馈和脑机接口 (BCI) [ 11 , 12 ]。过去,这些领域及其相关工具是分开发展的,但计算资源和实验数据的日益普及推动了横向方法和方法论桥梁的发展。视觉诱发电位 (VEP) 是一种特殊的 ERP,从枕叶皮质记录的 EEG 信号中提取,可由不同类型的视觉刺激触发,从简单(如棋盘格)[ 13 ,第 14 页,15 ] 到更复杂的视觉刺激(如人脸、3D 或运动图像)[ 14 , 16 – 20 ]。VEP 是通过计算大量正在进行的 EEG 信号试验的总平均值获得的(见公式 1),从而产生精心设计且易于识别的电位,随后可用于更好地理解视觉输入的连续处理阶段。然而,这些诱发反应来自至少两种不同的机制,分别源自加法模型或振荡模型 [8, 21 – 24]。对于加法模型,诱发反应来自对感觉输入的自下而上的连续处理。这会产生特定序列的单相诱发成分峰,这些峰最初嵌入自发 EEG 背景中。后者 EEG 活动被视为噪声,并通过随后的平均排除。对于振荡模型,诱发电位可能是由于特定频带内正在进行的 EEG 节律的相位锁定所致。这种 EEG 相位重组可以通过试验间一致性 (ITC) 来测量,作为对外部刺激的反应。从根本上讲,只有当相关 EEG 功率没有同时变化(增加或减少)时,这种测量才有意义。在这种情况下,我们处于纯相位锁定状态,诱发反应仅归因于正在进行的 EEG 振荡的重组。例如,体感诱发电位的 N30 分量就是这种情况,其中 70% 的幅度归因于纯相位锁定 [ 25 ]。事实上,在大多数 ERP 研究中,会出现混合情况(功率变化和相位锁定),这使得基础和临床解释变得困难。另一个缺点是,在大多数诱发电位研究中,对一组受试者进行的是总体平均值。虽然总体平均值方法可以得到适当的统计数据[26]和关于基本或临床结果的实际结论,但它掩盖了从临床角度来看可能至关重要的个体特性。当诊断工具基于总体平均值诱发电位[27]时,这个问题尤其重要。同样,对总体平均值数据应用逆建模[10,28]可以非常有效地识别ERP发生器[19,29-31],但不利于确定个体特征。面对这些缺点,