我们介绍了 Geomstats,一个用于非线性流形计算和统计的开源 Python 工具箱,例如双曲空间、对称正定矩阵空间、变换李群等等。我们提供面向对象且经过广泛单元测试的实现。除此之外,流形还配备了黎曼度量族,以及相关的指数和对数映射、测地线和并行传输。统计和学习算法提供了在流形上进行估计、聚类和降维的方法。所有相关操作都被矢量化以用于批量计算,并为不同的执行后端提供支持,即 NumPy、PyTorch 和 TensorFlow,从而实现 GPU 加速。本文介绍了该软件包,将其与相关库进行了比较,并提供了相关的代码示例。我们表明,Geomstats 提供了可靠的构建块来促进微分几何和统计学的研究,并使黎曼几何在机器学习应用中的使用更加民主化。源代码可根据 MIT 许可证在 geomstats.ai 上免费获取。
摘要 — 目的:近年来,黎曼几何在脑机接口 (BCI) 中的应用势头强劲。为黎曼 BCI 提出的大多数机器学习技术都认为流形上的数据分布是单峰的。然而,由于高数据变异性是脑电图 (EEG) 的一个关键限制,因此分布可能是多峰的而不是单峰的。在本文中,我们提出了一种新颖的数据建模方法,用于考虑 EEG 协方差矩阵的黎曼流形上的复杂数据分布,旨在提高 BCI 的可靠性。方法:我们的方法黎曼谱聚类 (RiSC) 使用基于测地距离的相似性测量的图来表示流形上的 EEG 协方差矩阵分布,然后通过谱聚类对图节点进行聚类。这允许灵活地在流形上对单峰和多峰分布进行建模。可以以 RiSC 为基础设计异常值检测器(即异常值检测黎曼谱聚类 (oden-RiSC))和多模态分类器(即多模态分类器黎曼谱聚类 (mcRiSC))。odenRiSC/mcRiSC 的所有必需参数均以数据驱动的方式选择。此外,无需预设异常值检测阈值和多模态分类模式数。结果:实验评估表明,odenRiSC 可以比现有方法更准确地检测 EEG 异常值,并且 mcRiSC 的表现优于标准单模态分类器,尤其是在高变异性数据集上。结论:odenRiSC/mcRiSC 有望使实验室外的真实 BCI 和神经人体工程学应用更加稳健。意义:RiSC 可以用作稳健的 EEG 异常值检测器和多模态分类器。
摘要 - 目的:riemannian几何形状用于脑部计算机界面(BCIS)已在纪念百年中获得了动力。针对Riemannian BCIS提出的大多数机器学习技术都会考虑一个人的数据分布是单峰的。但是,由于高数据可变性是脑电图(EEG)的关键限制,因此该分布可能是多模式的,而不是单峰。在本文中,我们提出了一种新型的数据建模方法,用于考虑在EEG协方差矩阵的Riemannian歧管上考虑复杂的数据分布,旨在提高BCI可靠性。方法:我们的方法,riemannian光谱聚类(RISC),代表使用基于地质距离提出的模拟测量的图形上的eeg协方差矩阵分布,然后通过光谱群集将图形节点组成。这允许在歧管上建模单峰和多模式分布。RISC可以用作设计名为Outier检测的离群检测器Riemannian光谱聚类(ODEN-RISC)和名为多模式的多模式分类器Riemannian Spectral spectral clustering(MCRISC)的基础。以数据驱动方式选择Odenrisc/Mcrisc的所有必需参数。越过,无需预先设置离群检测的阈值和多模式分类的模式的数量。结果:实验评估表明,与现有方法相比,Odenrisc可以更准确地检测EEG异常值,而Mcrisc进行了标准的单峰分类器,尤其是在高变异性数据集上。结论:预计Odenrisc/Mcrisc将有助于使现实生活中的BCI在实验室外和神经学应用程序外应用更强大。明显:RISC可以用作强大的EEG Outier检测器和多模式分类器。
脑机接口不需要任何肌肉能力就能进行交流,因此被广泛研究用于帮助运动障碍患者。脑电图 (EEG) 作为一种低成本、轻量级的技术,是记录大脑活动产生的电位的常用方法 [1]。尽管 BCI 有着广泛的临床应用,但它却无法在实验室外使用。需要克服的主要挑战之一是受试者之间高度的差异性,在文献中称为“BCI 效率低下”现象,相当一部分用户即使经过几次训练后仍无法控制 BCI 设备。解决这个问题的有效方法之一是改进神经解码器 [2]。为此,研究得出了依赖于协方差矩阵的新特征,例如,对于 𝑇 信号样本的 EEG 信号 𝑋,𝐶𝑜𝑣 = 1 𝑇 −1 𝑋𝑋 ⊤,以及邻接矩阵。这些邻接矩阵是
量子计算起源于托马斯·杨于 1802 年进行的所谓双缝实验。在该实验中,一个小实体(例如光子或电子)被导向两个平行狭缝,并观察到由此产生的干涉图案。观察表明,该实体表现得像波,这表明它同时穿过两个狭缝。从计算的角度来看,这种波粒二象性意味着单个信息比特可以编码为量子比特,量子比特是两种不同状态的叠加。量子计算的这一独特特性在计算时间和结果方面比传统计算具有显着优势,例如对于模式识别或使用有限的训练集(Rebentrost 等人 2014 年、Blance 和 Spannowsky 2021 年)。
代码调制视觉诱发电位 (cVEP) 在脑机接口 (BCI) 社区中越来越受欢迎 [1]。这种方法采用伪随机视觉闪烁,具有校准时间短等优势,因为只需要学习一个代码。其他解码方法,如按位解码 [2],已经实现了具有灵活解码周期的自定节奏 BCI。尽管取得了这些进步,但基于 cVEP 的 BCI 仍然主要在实验室环境中进行研究,因为每次使用前都需要重新校准。这一限制与所有 BCI 范式共有的跨会话和跨受试者差异有关。BCI 的这些差异源多种多样 [3],包括解剖学差异(例如灰质数量变化)、人为因素(例如教育水平和生活习惯差异)或生理因素(例如疲劳、注意力水平和压力水平)。此外,神经生理学差异(例如特定频率范围内频谱功率调制的变化)也会导致这些变化。为了解决这些变化源,人们进行了广泛的研究 [4, 3] 以提出新方法。评估迁移学习方法有两种主要设置,具体取决于目标对象可用的信息量。在最独立的设置中,称为领域泛化,没有来自目标对象的信息,因此模型是在数据上进行训练的
摘要 — 使用卡尔曼滤波器 (KF) 进行状态估计经常会遇到未知或经验确定的协方差矩阵,从而导致性能不佳。消除这些不确定性的解决方案正在向基于 KF 与深度学习方法混合的估计技术开放。事实上,从神经网络推断协方差矩阵会导致强制对称正定输出。在本文中,我们探索了一种新的循环神经网络 (RNN) 模型,该模型基于黎曼对称正定 (SPD) 流形的几何特性。为此,我们基于黎曼指数图定义了一个神经元函数,该函数取决于流形切线空间上的未知权重。这样,就推导出了一个黎曼成本函数,从而能够使用传统的高斯-牛顿算法将权重作为欧几里得参数进行学习。它涉及计算闭式雅可比矩阵。通过对模拟协方差数据集进行优化,我们展示了这种新方法对于 RNN 的可能性。
摘要 目的。迄今为止,在基于 EEG 的脑机接口中,黎曼解码方法与深度卷积神经网络的全面比较仍未在已发表的研究中出现。我们使用 MOABB(所有 BCI 基准之母)来解决这一研究空白,将新型卷积神经网络与最先进的黎曼方法进行比较,这些方法涉及广泛的 EEG 数据集,包括运动想象、P300 和稳态视觉诱发电位范式。方法。我们使用 MOABB 处理管道系统地评估了卷积神经网络(特别是 EEGNet、浅层 ConvNet 和深度 ConvNet)与成熟的黎曼解码方法的性能。该评估包括会话内、跨会话和跨受试者方法,以提供模型有效性的实用分析,并找到在不同实验设置中表现良好的整体解决方案。主要结果。我们发现在会话内、跨会话和跨受试者分析中,卷积神经网络和黎曼方法之间的解码性能没有显着差异。意义。结果表明,在使用传统的脑机接口范式时,在许多实验环境中,CNN 和黎曼方法之间的选择可能不会对解码性能产生重大影响。这些发现为研究人员提供了灵活性,可以根据诸如易于实施、计算效率或个人偏好等因素选择解码方法。
图是复杂结构的典型非欧几里得数据。近年来,Riemannian图表的学习已成为欧几里得学习的令人兴奋的替代方法。,里曼尼亚方法仍处于早期阶段:无论结构复杂性如何,大多数方法都会出现单个曲率(半径),由于指数/对数映射而导致数值不稳定,并且缺乏捕获基调规律性的能力。鉴于上述问题,我们提出了主题感知的Riemannian图表的问题,寻求数值稳定的编码器,以在带有无标签的多样化曲面中限制基序的规律性。为此,我们提供了一种具有生成对比度学习(Motifrgc)的新型主题Riemannian模型,该模型以一种自我监督的方式在Riemannian歧管中进行了Minmax游戏。首先,我们提出了一种新型的Riemannian GCN(D-GCN),在该GCN(D-GCN)中,我们用di-Versifed因子构建了由产品层构建多种狂热的歧管,并用稳定的内核层代替了指数/对数映射。第二,我们引入了一种主题感知的riemannian生成对比学习,以捕获构造的歧管中的主题规律性,并在没有外部标签的情况下学习主题感知的节点表示。经验结果表明了Mofrgc的优越性。
摘要 - 我们引入了Riemannian流匹配策略(RFMP),这是一种用于学习和合成机器人视觉策略的新型模型。RFMP利用流量匹配方法的有效训练和推理能力。通过设计,RFMP继承了流量匹配的优势:编码高维多模式分布的能力,通常在机器人任务中遇到,以及非常简单且快速的推理过程。我们证明了RFMP对状态和视觉条件的机器人运动策略的适用性。值得注意的是,正如机器人状态位于里曼尼亚歧管上一样,RFMP固有地包含了几何意识,这对于逼真的机器人任务至关重要。为了评估RFMP,我们进行了两个概念验证实验,将其性能与扩散策略进行了比较。尽管两种方法都成功 - 完全学习了所考虑的任务,但我们的结果表明,RFMP提供了更平稳的推理时间的动作轨迹。