Loading...
机构名称:
¥ 1.0

摘要 — 校准仍然是脑机接口 (BCI) 用户体验的重要问题。常见的实验设计通常涉及较长的训练期,这会增加认知疲劳,甚至在开始使用 BCI 之前。依靠先进的机器学习技术(例如迁移学习),可以减少或抑制这种依赖于受试者的校准。基于黎曼 BCI,我们提出了一种简单有效的方案,根据从不同受试者记录的数据训练分类器,以减少校准同时保持良好的性能。本文的主要新颖之处在于提出了一种可应用于非常不同范式的独特方法。为了证明这种方法的稳健性,我们对三个 BCI 范式的多个数据集进行了荟萃分析:事件相关电位 (P300)、运动意象和 SSVEP。依靠 MOABB 开源框架来确保实验和统计分析的可重复性,结果清楚地表明,所提出的方法可以应用于任何类型的 BCI 范式,并且在大多数情况下可以显著提高分类器的可靠性。我们指出了一些进一步改进迁移学习方法的关键特征。

使用黎曼迁移学习最小化 BCI 的主体相关校准

使用黎曼迁移学习最小化 BCI 的主体相关校准PDF文件第1页

使用黎曼迁移学习最小化 BCI 的主体相关校准PDF文件第2页

使用黎曼迁移学习最小化 BCI 的主体相关校准PDF文件第3页

使用黎曼迁移学习最小化 BCI 的主体相关校准PDF文件第4页

相关文件推荐

2023 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2023 年
¥1.0