摘要 — 在脑机接口 (BCI) 中,大多数基于事件相关电位 (ERP) 的方法都侧重于 P300 的检测,旨在对拼写任务进行单次试验分类。虽然这是一个重要的目标,但现有的 P300 BCI 仍然需要多次重复才能达到正确的分类准确率。P300 BCI 中的信号处理和机器学习进步主要围绕 P300 检测部分,而字符分类不在范围之内。为了在保持良好字符分类的同时减少重复次数,解决完整的分类问题至关重要。我们引入了一个端到端流程,从特征提取开始,由使用概率黎曼 MDM 的 ERP 级分类组成,该分类使用跨试验的贝叶斯置信度积累提供字符级分类。现有方法仅在字符闪现时增加其置信度,而我们新的管道,称为黎曼概率贝叶斯累积 (ASAP),在每次闪现后更新每个字符的置信度。我们提供了此贝叶斯方法的正确推导和理论重新表述,以便无缝处理从信号到 BCI 字符的信息。我们证明我们的方法在公共 P300 数据集上的表现明显优于标准方法。
主要关键词