摘要— 目标:会话间非平稳性是当前脑机接口 (BCI) 面临的主要挑战,会影响系统性能。在本文中,我们研究了使用通道选择来减少黎曼 BCI 分类器的会话间非平稳性。我们使用协方差矩阵的黎曼几何框架,因为它具有鲁棒性和良好的性能。当前的黎曼通道选择方法不考虑会话间非平稳性,通常在单个会话中进行测试。在这里,我们提出了一种新的通道选择方法,该方法专门考虑非平稳性影响,并在多会话 BCI 数据集上进行评估。方法:我们使用顺序浮动后向选择搜索策略删除最不重要的通道。我们的贡献包括:1) 在黎曼框架中通过不同标准量化多类问题中非平稳性对大脑活动的影响;2) 一种预测 BCI 性能是否可以通过通道选择提高的方法。结果:我们在三个基于多会话和多类心理任务 (MT) 的 BCI 数据集上评估了所提出的方法。与使用所有通道相比,它们可以显著提高受会话间非平稳性影响的数据集的性能,并且在所有数据集上都明显优于最先进的黎曼通道选择方法,尤其是在选择小通道集大小时。结论:通过通道选择降低非平稳性可以显著提高黎曼 BCI 分类准确性。意义:我们提出的通道选择方法有助于使黎曼 BCI 分类器对会话间非平稳性更具鲁棒性。索引词——脑机接口、EEG、黎曼流形、通道选择、非平稳性。
主要关键词