Loading...
机构名称:
¥ 3.0

摘要。目的:基于脑电图 (EEG) 的脑机接口 (BCI) 中的通道选择已进行了二十多年的广泛研究,目的是选择最佳的主体特定通道,以提高 BCI 的整体解码效率。随着基于深度学习 (DL) 的 BCI 模型的出现,需要新的视角和新颖的技术来进行通道选择。在这方面,与主体无关的通道选择很重要,因为使用跨主体数据训练的 DL 模型提供了卓越的性能,并且 EEG 特征的固有主体间变异性对与主体无关的 DL 训练的影响尚不完全清楚。方法:在这里,我们提出了一种在基于 DL 的运动想象 (MI)-BCI 中实现与主体无关的通道选择的新方法,使用逐层相关性传播 (LRP) 和神经网络修剪。实验使用来自韩国大学 (KU) EEG 数据集的 Deep ConvNet 和 62 通道 MI 数据进行。主要结果:使用我们提出的方法,由于 LRP 选择高度相关的通道,我们将通道数量减少了 61%,而与受试者无关的分类准确度没有任何显著下降(p=0.09)。基于 LRP 相关性的通道选择与传统的基于权重的选择相比提供了明显更好的准确度,同时使用了不到 40% 的总通道数,准确度差异范围为 5.96% 至 1.72%。仅使用总通道数 16% 的适应稀疏 LRP 模型的性能与适应基线模型的性能相似(p=0.13)。此外,仅使用总通道数 35% 的适应稀疏 LRP 模型的准确度比适应基线模型高出 0.53%(p=0.81)。对 LRP 选择的通道的分析证实了选择的神经生理学合理性,并强调了运动、顶叶和枕叶通道对 MI-EEG 分类的影响。意义:所提出的方法解决了 EEG-BCI 解码中的一个传统问题,同时与 BCI 领域的最新发展相关且适用。我们相信,我们的工作带来了模型可解释性作为一种解决问题的技术的有趣且重要的应用。

运动想象脑中基于相关性的通道选择......

运动想象脑中基于相关性的通道选择......PDF文件第1页

运动想象脑中基于相关性的通道选择......PDF文件第2页

运动想象脑中基于相关性的通道选择......PDF文件第3页

运动想象脑中基于相关性的通道选择......PDF文件第4页

运动想象脑中基于相关性的通道选择......PDF文件第5页

相关文件推荐