对《公司法》第 80 条规定的拟议公司行动持不同意见和投票反对的人,可以在投票之日起三十 (30) 天内行使评估权,以书面形式要求公司支付其股份在投票前一天的公平价值。这些特定的公司行动如下:(a) 修改公司章程和细则,其效果是 (i) 改变和限制任何股东或股份类别的权利,(ii) 授权在任何方面优先于任何类别的已发行股份的优先权,或 (iii) 延长或缩短公司存续期;(b) 出售、出租、抵押或以其他方式处置公司的全部或绝大部分资产;(c) 合并或整合;以及 (d) 将公司资金投资于其他公司或企业或用于其主要目的以外的任何目的。公司章程的拟议修正案不是公司事务或行动,不会使持不同意见的股东有权行使 RCCP 第十章规定的评估权。
碱基编辑器 (BE) 是一种基因组编辑剂,可高效、特异地安装点突变。由于 BE 依赖于尿嘧啶和肌苷 DNA 损伤中间体(而不是双链 DNA 断裂或 DSB),因此有人推测 BE 依赖于比 DSB 依赖型基因组编辑方法更普遍的 DNA 修复途径,而 DSB 依赖型基因组编辑方法需要仅在细胞周期的某些阶段活跃的过程。我们在此报告了使用细胞同步实验对碱基编辑的细胞周期依赖性进行的首次系统研究。我们发现,切口酶衍生的 BE(在尿嘧啶或肌苷碱基对面引入 DNA 骨架切口)独立于细胞周期发挥作用,而非切口 BE 高度依赖于 S 期(DNA 合成期)。我们发现,胞嘧啶碱基编辑过程中 G1(生长期)的同步会导致 C • G 到 A • T“副产物”引入率显著增加,这可用于发现精确 C • G 到 A • T 碱基编辑的新策略。我们观察到 DNA 损伤修复途径的内源表达水平足以将碱基编辑中间体加工成所需的编辑结果,并且碱基编辑过程不会显著扰乱转录水平。总体而言,我们的研究提供了机制数据,证明了切口酶衍生的 BE 在整个细胞周期内进行基因组编辑的稳健性。
第24 AF 24号空军(空军网络)AACOG AACOG ACOG ALAMO地区政府委员会Ampo Alamo地区大都会规划组织ABW空军基地ADAIR ADAIR ADEAR ADVERS飞机AFB空军基地AFCEC空军AFCEC空军空军空军空军空军空军空军中心AFH AFH AFH AFH AFI覆盖区AGL地面AICUZ空气装置兼容使用区域空军美国空军APZ意外事件ARFF飞机救援和消防ATC空中交通管制ATFP反恐/力量保护/力量保护APHC陆军公共卫生中心BASH BASH BIRD BASH BASH BIRD/WIRDLIFE IRCTION CW网络空间翼CZ CZ透明区DB DECIBEL DBPK峰值声音压力水平DCO防御性网络操作DNL日夜平均声音水平国防部国防部DODI国防部国防部DU/AC居住单元(S)每个英亩爆炸性爆炸性爆炸性爆炸性省点emi emi emi emi emi emi电磁干扰epa epa epa epa epa epa epa epa epa epa epa epa epac第24 AF 24号空军(空军网络)AACOG AACOG ACOG ALAMO地区政府委员会Ampo Alamo地区大都会规划组织ABW空军基地ADAIR ADAIR ADEAR ADVERS飞机AFB空军基地AFCEC空军AFCEC空军空军空军空军空军空军空军中心AFH AFH AFH AFH AFI覆盖区AGL地面AICUZ空气装置兼容使用区域空军美国空军APZ意外事件ARFF飞机救援和消防ATC空中交通管制ATFP反恐/力量保护/力量保护APHC陆军公共卫生中心BASH BASH BIRD BASH BASH BIRD/WIRDLIFE IRCTION CW网络空间翼CZ CZ透明区DB DECIBEL DBPK峰值声音压力水平DCO防御性网络操作DNL日夜平均声音水平国防部国防部DODI国防部国防部DU/AC居住单元(S)每个英亩爆炸性爆炸性爆炸性爆炸性省点emi emi emi emi emi emi电磁干扰epa epa epa epa epa epa epa epa epa epa epa epa epac
基因组资源联盟(简称“联盟”)由 7 个知识库项目共同努力而成:酵母菌基因组数据库、WormBase、FlyBase、小鼠基因组数据库、斑马鱼信息网络、大鼠基因组数据库和基因本体资源。联盟致力于提供多种益处:为这些项目服务的各个社区提供更好的服务;为所有生物医学研究人员、生物信息学家、临床医生和学生提供统一的数据视图;以及提供更可持续的基础设施。联盟已统一了跨生物体数据,以提供基因功能、基因表达和人类疾病相关性的有用比较视图。比较视图的基础是直系同源关系的共享调用和通用本体的使用。关键的数据类型是等位基因和变异、基于基因本体注释的基因功能、表型、与人类疾病的关联、基因表达、蛋白质-蛋白质和遗传相互作用以及参与途径。信息呈现在统一的基因页面上,便于轻松总结所涵盖的 7 种生物(芽殖酵母、线虫秀丽隐杆线虫、果蝇、家鼠、斑马鱼、褐家鼠和人类)中每种基因的信息。统一的知识可在 alliancegenome.org 门户网站上免费获取,以可下载文件和 API 的形式提供。我们希望其他现有和新兴知识库能够加入这一努力,提供每个知识库目前提供的有用数据和功能的统一。
调整大脑MRI数据分析中的全球度量与保留全球措施一直是一个长期存在的问题,并且可能对皮质的基因组研究具有重要意义。调整全球措施可确保关注区域的结果不会被总体上大的大脑大小混淆。但是,当总体措施相关时,对全球群体进行调整可能会丢弃重要信号。我们表明,在基因组研究中保留与全球脑测量的调整会影响基因发现,尤其是对额叶 - 顶质皮层的发现。了解与其他物种相比,了解有助于人类大脑中扩展的关联区域的遗传因素,例如前额叶皮层,可以帮助提供对更高人类认知及其独特发展的机械洞察力。
背景和目的:大约1/3的青年在屏幕媒体活动(SMA)中花费了四个多小时。这项研究利用纵向脑成像和中介分析来检查SMA,脑模式和内在化问题之间的关系。方法:分析了通过质量控制的青少年脑认知发展(ABCD)参与者的数据(ABCD)参与者(N 5 5,166; 2,385个女孩)。关节和个体变异解释(JIVE)识别221个大脑特征(即表面积,厚度或皮质和皮质下灰质的差异)之间的大脑共发育模式(即基线和两年填充数据之间)。广义的线性混合效应模型研究了基线SMA,结构共同发展以及两年随访的内部化和外部化精神病理学之间的关联。结果:基线的SMA与第2年的内在心理病理学有关(β¼0:020;se¼0:008;p¼0:014)和结构共同开发模式(β¼0:015;se¼0:¼0:007;p¼0:p¼0:029),在该模式的范围内,该模式的变化率是灰色的。双侧上部额叶,中间额叶,下壁和下颞区的灰色体积和/或皮质厚度度量比其他区域的颞下区域更相似。该组件部分介导了基线SMA与未来内部化问题之间的关系(间接效应5 0.020,p -value 5 0.043,比例介导:2.24%)。讨论和结论:在9 - 10年内,SMA的青年参与度更高,两年后统计学上预测了更高的内在化水平。该关联是由皮质脑电路介导的,尽管效应尺寸相对较小。发现可能有助于描述有助于内在行为的过程,并帮助确定面临更大风险的个人。
总共可以评估113名妇女在MTB之后进行治疗。 54%的人接受了匹配的治疗。MS≥40%患者的总体反应率更高(30.8%V 7.1%; P = .001),无进展的生存率(PFS;危险比[HR] 0.51; 95%CI,0.31至0.85; P = .002),P = .002)以及趋势趋于趋势,趋势为趋势。 分析。PFS优势在多元分析中仍然显着(HR 0.5; 95%CI,0.3至0.8; P = .006)。更高的MTB建议合规性与改善的中位PFS(完成为9.0个月;部分为6.0个月;不合规性4.0个月; p = .004)和整体生存期(17.1个月完整; 17.8个月; 17.8个月;部分;部分;部分; p = .046)。完全符合MTB的患者的MS较高(P,.001)。在比较所有MTB依从性的多变量分析中,总体响应(HR 9.5; 95%CI,2.6至35.0; P = .001)和临床有益(HR 8.8; 95%CI,2.4至33.2; p = .001)的速率显着提高,具有更高的合规性。
摘要 作用于 RNA 的腺苷脱氨酶 (ADAR) 可以重新用于实现可编程的 RNA 编辑,然而它们的外源递送会导致转录组范围的脱靶,此外,对某些 RNA 基序(尤其是那些由 5' 鸟苷侧翼的 RNA 基序)的酶活性非常低,因此限制了它们作为转录组工程工具集的效用。为了解决这些问题,我们首先对 ADAR2 脱氨酶结构域进行了新的深度突变扫描,直接测量了 261 个残基上每个氨基酸替换对 RNA 编辑的影响。这使我们能够创建一个域范围的诱变图,同时还揭示了一种新的高活性变体,其在 5'-GAN-3' 基序处具有改进的酶活性。由于 ADAR 酶(尤其是高活性变体)的过度表达会导致转录组范围内的显著脱靶,我们接下来设计了一种分裂的 ADAR2 脱氨酶,与全长脱氨酶过度表达相比,其 RNA 编辑特异性提高了 100 倍以上。总之,我们预计 ADAR2 脱氨酶结构域的这种系统工程将使 ADAR 工具集在 RNA 生物技术应用中具有更广泛的用途。
接待处 /保持身体距离 /保持身体距离 /保持身体距离 /保持身体距离 /保持身体距离 /保持身体距离 500/96
8 东北大学,美国马萨诸塞州波士顿 9 澳门大学科技学院电气与计算机工程系,中国澳门 10 日内瓦大学生物技术校区,瑞士 11 PiPsy 研究所,法国德拉韦伊 12 洛桑联邦理工学院(EPFL)生物工程研究所、神经修复中心;瑞士日内瓦生物技术校区 13 以色列贝尔谢巴本·古里安内盖夫大学健康学院 14 以色列卫生部贝尔谢巴精神卫生中心 15 土耳其伊斯坦布尔生活健康研究与教育中心 16 美国德克萨斯州奥斯汀德克萨斯大学奥斯汀分校机械工程系 17 德国图宾根大学医学心理学与行为神经生物学研究所 18 美国加利福尼亚州洛杉矶加州大学大卫·格芬医学院神经生物学与生物行为精神病学 19 美国马萨诸塞州波士顿波士顿波士顿大学医学院儿科系 20 荷兰马斯特里赫特马斯特里赫特大学认知神经科学系 21 柏林夏洛特医学院神经科学研究中心 (NWFZ) 临床神经技术实验室德国 22 智利天主教大学生物与医学工程研究所,智利圣地亚哥马库尔 23 渥太华大学,美国亚利桑那州苏普赖斯 24 图宾根大学临床心理学系,德国图宾根 25 维也纳大学心理学学院基础心理学研究与研究方法系,奥地利维也纳 26 苏黎世大学精神病医院精神病学、心理治疗与心身医学系,瑞士苏黎世 27 萨尔茨堡大学认知神经科学中心和心理学系,奥地利萨尔茨堡 28 伦敦国王学院精神病学、心理学与神经科学研究所儿童与青少年精神病学系,英国伦敦 29 Laseeb-ISR-IST 里斯本大学,葡萄牙 30 以色列理工学院,以色列海法31 加利福尼亚大学认知科学系,美国加利福尼亚州圣地亚哥 32 曼海姆中央精神卫生研究所心身医学与心理治疗系,曼海姆/海德堡大学医学院,德国 33 莫斯科国立高等经济学院,俄罗斯 34 上海师范大学心理学系,中国上海 35 Bitbrain,西班牙萨拉戈萨 36 SANPSY,USR 3413,波尔多大学,波尔多 CHU de Bordeaux,Place Amelie Raba Leon,法国波尔多 37 明斯特大学精神病学系,德国明斯特 38 田纳西大学心理学系,美国诺克斯维尔 39 Inria Bordeaux Sud-Ouest/LaBRI 波尔多大学 - CNRS-Bordeaux INP,法国波尔多 40 精神病学和神经心理学系,荷兰马斯特里赫特大学健康、医学与生命科学学院心理健康与神经科学学院 41 美国德克萨斯州奥斯汀德克萨斯大学奥斯汀分校心理学系 42 俄罗斯莫斯科国立高等经济学院认知神经科学研究所生物电接口中心 43 数字健康研究所信息与互联网技术系;莫斯科国立谢切诺夫第一医科大学,俄罗斯莫斯科 44 杜克大学神经工程中心,美国北卡罗来纳州达勒姆 45 西部大学精神病学系,加拿大安大略省伦敦 46 维尔茨堡大学心理学系 I,心理干预,行为分析和行为调节, 47 奥尔登堡大学心理学系神经心理学实验室,德国奥尔登堡 48 耶鲁大学放射学和生物医学成像系磁共振研究中心 (MRRC),美国康涅狄格州纽黑文 49 维也纳医科大学儿童和青少年精神病学系,奥地利维也纳 50 JARA 研究所分子神经科学和神经成像 (INM-11),于利希研究中心,德国于利希 51 谢菲尔德大学国际学院心理学系,塞萨洛尼基城市学院,希腊图卢兹让·饶勒斯大学,图卢兹,法国 53 马斯特里赫特大学心理学和神经科学学院,马斯特里赫特,荷兰 54 奥斯陆大学心理学系多模态成像和认知控制实验室,挪威 55 布朗大学阿尔珀特医学院,罗德岛州普罗维登斯,美国 56 埃因霍温理工大学电气工程系,荷兰 57 索拉斯基医学中心沃尔高级成像研究所 Sagol 脑研究所,以色列特拉维夫 58 耶鲁大学医学院放射学和生物医学成像系,美国康涅狄格州纽黑文 59 日内瓦大学医院临床神经科学系神经康复分部,瑞士日内瓦德国 48 耶鲁大学放射学和生物医学成像系磁共振研究中心 (MRRC),美国康涅狄格州纽黑文 49 维也纳医科大学儿童和青少年精神病学系,奥地利维也纳 50 JARA 研究所分子神经科学和神经成像 (INM-11),德国于利希研究中心 51 谢菲尔德大学国际学院心理学系,希腊塞萨洛尼基城市学院 52 CLLE 实验室,法国图卢兹让·饶勒斯大学 CNRS,法国图卢兹 53 马斯特里赫特大学心理学和神经科学学院,荷兰马斯特里赫特 54 挪威奥斯陆大学心理学系多模式成像和认知控制实验室 55 布朗大学阿尔珀特医学院,美国罗德岛州普罗维登斯 56 荷兰埃因霍温理工大学电气工程系57 以色列特拉维夫索拉斯基医学中心沃尔高级成像研究所 Sagol 脑研究所 58 美国康涅狄格州纽黑文耶鲁大学医学院放射学和生物医学成像系 59 瑞士日内瓦日内瓦大学医院临床神经科学系神经康复分部德国 48 耶鲁大学放射学和生物医学成像系磁共振研究中心 (MRRC),美国康涅狄格州纽黑文 49 维也纳医科大学儿童和青少年精神病学系,奥地利维也纳 50 JARA 研究所分子神经科学和神经成像 (INM-11),德国于利希研究中心 51 谢菲尔德大学国际学院心理学系,希腊塞萨洛尼基城市学院 52 CLLE 实验室,法国图卢兹让·饶勒斯大学 CNRS,法国图卢兹 53 马斯特里赫特大学心理学和神经科学学院,荷兰马斯特里赫特 54 挪威奥斯陆大学心理学系多模式成像和认知控制实验室 55 布朗大学阿尔珀特医学院,美国罗德岛州普罗维登斯 56 荷兰埃因霍温理工大学电气工程系57 以色列特拉维夫索拉斯基医学中心沃尔高级成像研究所 Sagol 脑研究所 58 美国康涅狄格州纽黑文耶鲁大学医学院放射学和生物医学成像系 59 瑞士日内瓦大学医院临床神经科学系神经康复分部