摘要 — 可植入脑机接口 (BMI) 在运动康复和移动性增强方面大有可为,它们需要准确且节能的算法。在本文中,我们提出了一种用于可植入 BMI 的回归任务的新型脉冲神经网络 (SNN) 解码器。SNN 通过增强的时空反向传播进行训练,以充分利用其处理时间问题的能力。所提出的 SNN 解码器在离线手指速度解码任务中的表现优于最先进的卡尔曼滤波器和人工神经网络 (ANN) 解码器。解码器部署在基于 RISC-V 的硬件平台上,并经过优化以利用稀疏性。所提出的实现在占空比模式下的平均功耗为 0.50mW。在进行无占空比的连续推理时,它实现了每次推理 1.88 µ J 的能效,比基线 ANN 低 5.5 倍。此外,每次推理的平均解码延迟为 0.12 毫秒,比 ANN 实现快 5.7 倍。
脉冲神经网络 (SNN) 是神经形态计算的一个分支,目前在神经科学应用中用于理解和建模生物大脑。SNN 还可能用于许多其他应用领域,例如分类、模式识别和自主控制。这项工作提出了一个高度可扩展的硬件平台 POETS,并使用它在大量并行和可重构的 FPGA 处理器上实现 SNN。当前系统由 48 个 FPGA 组成,提供 3072 个处理核心和 49152 个线程。我们使用该硬件实现了多达四百万个神经元和一千个突触。与其他类似平台的比较表明,当前的 POETS 系统比 Brian 模拟器快二十倍,比 SpiNNaker 快至少两倍。
关键字; UTBB 28NM FD-SOI,Analog SNN,Analog Envm,Envm Integration。2。简介基于新兴的非易失性记忆(ENKM)横杆的尖峰神经网络(SNN)是有希望的内存计算组件,这些组件具有出色的能力,可在边缘低功率人工智能。然而,Envms突触阵列与28nm超薄体和掩埋的氧化物完全耗尽的硅在绝缘子中(UTBB-FDSOI)技术节点的结合是一个挑战。在模拟尖峰神经网络(SNN)中,输入神经元通过单位驱动器透射器(1T1R)突触与输出神经元互连,并通过突触量通过突触转换为电流的电压尖峰来完成计算[1]。神经元会积聚尖峰到预定义的阈值,然后产生输出尖峰。神经元能力区分和容纳大量突触和输入尖峰的能力直接与直至神经元的射击阈值的电压摆动直接相关。这主要取决于膜电容,突触电荷的净数和低功率神经元的阈值[2]。
遵循Boz˙ek-Wyskiel参数化倾斜初始条件,这是一种基于Glauber碰撞几何形状结构纵向倾斜的螺栓固定的替代方法。这种纵向倾斜的初始条件与理想clvisc(3 + 1)d流体动力模型相结合,观察到在广泛的速度范围内的不变的定向流相关V 1。将模型的结果与实验性观察到的来自√snn = 200 Gev Cu + Cu的导向流量V 1(η)的数据进行了比较,rhIC Energy在RhIC Energy上的cu + Au + Au碰撞与√snn = 2.76 TEV和√snn = 5.02 tev pb + pb collisions at lhc lhc lhc lhc lhc colusions。我们发现,重离子碰撞中的定向流量测量可以对向前和向后传入核的不平衡以及沿X方向的压力梯度的幅度不对称设定强大的限制。
摘要 — 脉冲神经网络 (SNN) 通过离散二进制事件计算和传递信息。在新兴的神经形态硬件中,它被认为比人工神经网络 (ANN) 更具生物学合理性且更节能。然而,由于不连续和不可微分的特性,训练 SNN 是一项相对具有挑战性的任务。最近的工作通过将 ANN 转换为 SNN 在出色性能上取得了实质性进展。由于信息处理方面的差异,转换后的深度 SNN 通常遭受严重的性能损失和较大的时间延迟。在本文中,我们分析了性能损失的原因,并提出了一种新型双稳态脉冲神经网络 (BSNN),解决了由相位超前和相位滞后引起的失活神经元 (SIN) 脉冲问题。此外,当基于 ResNet 结构的 ANN 转换时,由于快捷路径的快速传输,输出神经元的信息不完整。我们设计了同步神经元 (SN) 来帮助有效提高性能。实验结果表明,与以前的工作相比,所提出的方法仅需要 1/4-1/10 的时间步骤即可实现几乎无损的转换。我们在包括 CIFAR-10(95.16% top-1)、CIFAR-100(78.12% top-1)和 ImageNet(72.64% top-1)在内的具有挑战性的数据集上展示了 VGG16、ResNet20 和 ResNet34 的最先进的 ANN-SNN 转换。
在所有神经网络中,PIKING 神经网络 (SNN) 最忠实地模拟了人脑,并且被认为是处理时间数据最节能的网络。人工神经元和突触是 SNN 的组成部分。最初,SNN 的硬件采用复杂的互补金属氧化物半导体 (CMOS) 电路实现,其中单个神经元或突触由多个晶体管实现,这在面积和能耗方面非常密集 [1]。2008 年忆阻器的发现促进了使用单个双端器件实现人工突触的发展 [2],[3]。然而,尽管人工神经元同样重要,但使用单个器件实现人工神经元的研究还不够深入。最近,阈值开关忆阻器 (TSM) 器件 [4]、非挥发性忆阻器 [5]、相变材料 (PCM) [6]、基于铁电材料的场效应晶体管 (FET) [7]、[8] 和浮体晶体管 [9] 已被用于演示用于 SNN 的漏电积分激发 (LIF) 神经元。二维材料的忆阻特性为利用这些原子级薄系统实现人工神经元提供了机会,这将实现神经网络硬件的最终垂直扩展 [10]-[12]。H Kalita 等人演示了一种基于 MoS 2 /石墨烯 TSM 的人工神经元,但阈值电压高、开关比低、导通时间短。
新兴的非易失性存储设备,即忆阻器,在神经形态硬件设计中展现出了非凡的前景,特别是在脉冲神经网络 (SNN) 硬件实现中。基于忆阻器的 SNN 已经应用于解决传统人工神经网络 (ANN) 解决的任务(例如图像分类和模式识别),并且不同学科仍在进行更多尝试以挖掘这一新研究课题的潜力。要将忆阻器应用于神经形态应用(本文中严格定义为使用 SNN 的应用),可以遵循两种途径。一种方法是首先利用硬件基础设施来表征和控制忆阻器设备,然后将其映射到应用程序的更高级函数(例如矩阵乘法)。另一种方法是将数据驱动的忆阻器模型嵌入软件模拟器中,以使用从真实设备中提取的参数来模拟应用程序。
摘要 — 在硬件加速器上运行大型深度神经网络 (DNN) 所消耗的能量主要来自需要大量快速内存来存储状态和权重。目前,只有通过 DRAM 才能经济地满足这种大型内存需求。尽管 DRAM 是高吞吐量和低成本内存(成本比 SRAM 低 20 倍),但其较长的随机访问延迟不利于脉冲神经网络 (SNN) 中不可预测的访问模式。此外,从 DRAM 访问数据比使用该数据进行算术运算消耗的能量高出几个数量级。如果有本地内存可用且产生的峰值很少,则 SNN 是节能的。本文报告了我们在过去 5 年中在卷积和循环深度神经网络硬件加速器方面的发展,这些加速器利用了与 SNN 类似的空间或时间稀疏性,但即使使用 DRAM 来存储大型 DNN 的权重和状态,也能实现 SOA 吞吐量、功率效率和延迟。
摘要 - 在性能和能量限制下的腿部机器人运动的在线学习仍然是一个挑战。的方法,例如随机梯度,深度增强学习(RL),已经针对双子,四倍和六脚架进行了探索。这些技术在计算密集程度上,因此很难在边缘计算平台上实施。这些方法在能源消耗和吞吐量方面也是不足的,因为它们依赖复杂的传感器和数据预处理。另一方面,神经形态范围(例如尖峰神经网络(SNN))在边缘智能上的低功率计算中变得越来越有利。snn表现出具有突触的仿生峰值时间依赖性可塑性(STDP)的强化学习机制的能力。但是,尚未探索训练腿部机器人以中央模式发生器(CPG)在SNN框架中生成的同步步态模式行走。这种方法可以将SNN的效率与基于CPG的系统的同步运动相结合 - 提供了移动机器人技术中端到端学习的突破性绩效。在本文中,我们提出了一种基于增强的随机学习技术,用于培训刺激CPG的六型固醇机器人,该机器人学会了在没有先验知识的情况下使用生物风格的三脚架步态行走。整个系统是在具有集成传感器的轻质Raspberry Pi平台上实现的。我们的方法在有限的边缘计算资源中为在线学习打开了新的机会。
摘要 - 大语言模型(LLMS)中的前进已导致其广泛采用和在各个领域的大规模部署。但是,由于其大量的能耗和碳足迹,它们的环境影响,尤其是在推断期间,已经成为人们越来越关注的问题。现有研究仅着眼于推理计算,忽视了网络辅助LLM服务系统中碳足迹的分析和优化。为了解决这一差距,我们提出了AOLO,这是一个用于低碳导向的无线LLM服务的分析和优化框架。AOLO引入了全面的碳足迹模型,该模型量化了整个LLM服务链中的温室气体排放,包括计算推理和无线通信。此外,我们制定了一个优化问题,旨在最大程度地减少整体碳足迹,该碳足迹是通过在体验质量和系统性能限制下的关节优化推理输出和传递功率来解决的。为了实现这种联合优化,我们通过采用SNN作为参与者网络来利用尖峰神经网络(SNN)的能源效率,并提出了一种低碳导向的优化算法,即基于SNN的基于SNN的深度加固学习(SDRL)。全面的模拟表明,与基准软批评者相比,SDRL算法显着降低了整体碳足迹,降低了18.77%,突出了其实现更可持续的LLM推理服务的潜力。