最近,从鲁棒性和能量效率方面,受到脑启发的计算模型表现出巨大的潜力,可以超越当今的深度学习解决方案。尤其是,尖峰神经网络(SNN)和高维计算(HDC)在实现了有效和鲁棒的认知学习方面表现出了令人鼓舞的结果。尽管取得了成功,但这两个受大脑启发的模型具有不同的优势。SNN模仿了人脑的物理特性,而HDC则以更抽象和功能水平对大脑进行建模。他们的设计理念展示了激励其组合的互补模式。在记忆的经典心理模型的帮助下,我们提出了SpikeHD,这是第一个从根本上结合尖峰神经网络和超维计算的框架。SpikeHD生成了一个可扩展且强大的认知学习系统,可以更好地模仿大脑功能。SpikeHD通过保留基于原始事件的Spike数据的空间和时间相关性来利用尖峰神经网络提取低级特征。然后,它利用HDC通过将信号映射到高维空间,学习抽象信息并对数据进行分类来通过SNN输出进行操作。我们对一组基准测试问题的广泛评估表明,与SNN架构相比,SpikeHD提供了以下好处:(1)通过利用两阶段信息处理来增强学习能力,(2)使噪声和失败的实质性稳健性和(3)减少网络的大小和需求的参数,从而使学习能力具有重要的功能。
摘要:现代神经科学中的挑战之一是创建一个脑介绍。基于在体外生长的神经网络的这种半小型设备在体外生长时应与环境相互作用。这项工作中的一个关键点是开发一种能够进行联想学习的神经网络体系结构。这项工作提出了一个中尺度模块化尖峰神经网络(SNN)的数学模型,以在脑线芯片环境中研究学习机制。我们表明,除了峰值依赖性可塑性(STDP)外,突触和神经元竞争是成功学习的关键因素。此外,最短的途径规则可以实施负责处理来自环境的有条件刺激的突触竞赛。该解决方案已准备好在神经元文化中进行测试。可以通过对负责无条件反应的SNN模量进行横向抑制来实施神经元竞争。对这种方法的经验测试具有挑战性,需要开发一种具有给定兴奋性和抑制性神经元比的培养物的技术。我们测试了移动机器人中嵌入的模块化SNN,并表明它可以在触摸(无条件)和超声波(条件)传感器之间建立关联。然后,机器人只能依靠超声传感器避免障碍而不会击中障碍。
摘要:脑机接口 (BMI) 代表着一种变革性技术,可实现人脑与外部设备之间的直接交互。在各种 BMI 方法中,脉冲神经网络 (SNN) 因其能够有效模仿大脑的脉冲行为而脱颖而出。本文介绍了一种先进硬件架构的设计和实现,该架构能够在现场可编程门阵列 (FPGA) 上执行与脑电图 (EEG) 采集系统集成的 SNN 计算。首先使用四层将数据预处理成数组以进行特征提取。该模型在软件中训练,存储权重和参数,然后用于创建硬件模型并生成比特流文件。Python 覆盖连接软件和硬件,允许输出模拟以进行精度计算。
摘要 —本文提出了一种神经形态音频处理的新方法,将脉冲神经网络 (SNN)、Transformers 和高性能计算 (HPC) 的优势整合到 HPCNeuroNet 架构中。利用英特尔 N-DNS 数据集,我们展示了该系统处理多种语言和噪声背景下的不同人类声音录音的能力。我们方法的核心在于将 SNN 的时间动态与 Transformers 的注意机制相融合,使模型能够捕捉复杂的音频模式和关系。我们的架构 HPC-NeuroNet 采用短时傅里叶变换 (STFT) 进行时频表示,采用 Transformer 嵌入进行密集向量生成,采用 SNN 编码/解码机制进行脉冲序列转换。通过利用 NVIDIA 的 GeForce RTX 3060 GPU 和英特尔的 Core i9 12900H CPU 的计算能力,系统的性能得到进一步增强。此外,我们在 Xilinx VU37P HBM FPGA 平台上引入了硬件实现,针对能源效率和实时处理进行了优化。所提出的加速器在 100 MHz 下实现了 71.11 千兆操作每秒 (GOP/s) 的吞吐量,片上功耗为 3.55 W。与现成设备和最新最先进实现的比较结果表明,所提出的加速器在能源效率和设计灵活性方面具有明显优势。通过设计空间探索,我们提供了优化音频任务核心容量的见解。我们的发现强调了集成 SNN、Transformers 和 HPC 进行神经形态音频处理的变革潜力,为未来的研究和应用树立了新的标杆。
摘要 — 由于其事件驱动的特性,脉冲神经网络 (SNN) 被认为是计算效率高的模型。脉冲神经元编码有用的时间事实并具有高抗噪性。然而,时空复杂性的高质量编码及其对 SNN 的训练优化受到当前问题的限制,本文提出了一种新颖的分层事件驱动视觉设备,以探索信息如何通过生物可控机制在视网膜中传输和表示。该认知模型是一个增强脉冲的框架,包括 CNN 的功能学习能力和 SNN 的认知能力。此外,该视觉设备以生物现实主义的方式建模,具有无监督学习规则和高级脉冲发放率编码方法。我们在一些图像数据集(MNIST、CIFAR10 及其嘈杂版本)上对它们进行训练和测试,以表明我们的模型可以处理比现有认知模型更有价值的数据。本文还提出了一种新颖的量化方法,使所提出的基于脉冲的模型更适合神经形态硬件实现。结果表明,这种联合 CNN-SNN 模型可以获得更高的聚焦精度并获得更有效的泛化能力。
近年来,利用机器学习进行生物医学图像和电信号分析的研究较多[1,2]。然而,传统的人工神经网络虽然受到生物神经元的启发,但不具备生物可解释性,且需要大量的计算和能耗,不利于医疗数据的实时快速分析。随着神经网络的发展,第三代神经网络——脉冲神经网络(SNN)应运而生。虽然其准确率相对较低、训练存在困难,但由于SNN的网络结构和训练规则更具生物可解释性,具有能耗更低、速度更快、对时空数据更适用等优势。因此,利用脉冲神经网络进行医疗数据研究具有重要意义。
深度学习时代通过利用广泛传感器产生的大数据和不断增长的计算能力,为无处不在的机器人应用提供了巨大的机会。而对自然人机交互 (HRI) 的日益增长的需求以及对能源效率、实时性能和数据安全的关注,则推动了新的解决方案的产生。在本文中,我们提出了一种基于大脑启发式脉冲神经网络 (SNN) 的人机听觉接口,即 HuRAI。HuRAI 将语音活动检测、说话人定位和语音命令识别系统集成到一个统一的框架中,该框架可以在新兴的低功耗神经形态计算 (NC) 设备上实现。我们的实验结果证明了 SNN 的卓越建模能力,可以对每个任务实现准确而快速的预测。此外,能源效率分析揭示了一个引人注目的前景,与在最先进的 Nvidia 图形处理单元 (GPU) 上运行的等效人工神经网络相比,其能源节省高达三个数量级。因此,将大规模 SNN 模型的算法能力与 NC 设备的能源效率相结合,为实时、低功耗机器人应用提供了一种有吸引力的解决方案。2021 Elsevier BV 保留所有权利。
提取和分析详细的视觉信息。传统的人工神经网络(ANN)在这一领域取得了长足的进步,但是尖峰神经网络(SNN)的能源效率和以生物为基础的基于时间的处理而引起了人们的关注。然而,由于限制,诸如量化误差和次优膜电位分布之类的局限性,现有的基于SNN的语义分割方法面临着高精度的挑战。这项研究介绍了一种基于尖峰 - 深板的新型尖峰方法,并结合了正则膜电位损失(RMP-loss)来应对这些挑战。建立在DeepLabv3体系结构的基础上,提出的模型通过优化SNN中的膜电位分布来利用RMP-loss来提高分割精度。通过优化膜电位的存储,其中仅在最后一个时间步骤存储值,该模型可显着减少内存使用和处理时间。这种增强不仅提高了计算效率,而且还提高了语义分割的准确性,从而可以对网络行为进行更准确的时间分析。提出的模型还显示出更好的稳健性,以防止噪声,在不同级别的高斯噪声下保持其精度,这在实际情况下很常见。所提出的方法在标准数据集上展示了竞争性能,展示了其用于节能图像处理应用的潜力
摘要:正念训练与心理健康和认知能力的改善相关,但这些变化背后的具体神经生理机制尚不清楚。本研究使用一种新型的受大脑启发的人工神经网络来研究正念训练对脑电图功能的影响。参与者在三个评估时间点完成一项 4 音听觉异常任务(包括目标和物理上相似的干扰物)。在 A 组(n = 10)中,这些任务是在 6 周正念训练之前、训练后立即和 3 周的随访中完成的;在 B 组(n = 10)中,这些任务是在干预等待期(训练前 3 周)、正念训练前和正念训练后完成的。使用脉冲神经网络(SNN)模型,我们评估了从捕捉与事件相关电位(ERP)相关的神经动态的脑电图数据特征中跨空间和时间生成的并发神经模式。该技术利用了整个 ERP 和跨电极空间极性变化的时间动态。研究结果支持对干扰项的反应相对于目标刺激的连接权重前移。右额叶对干扰项的连接权重与特质正念(正向)和抑郁(负向)相关。此外,正念训练与目标(仅双侧额叶、左额中央和颞叶区域)和干扰项的连接权重增加有关。SNN 模型在根据正念训练对大脑状态进行分类方面优于其他机器学习方法。研究结果表明 SNN 模型
尖峰神经形态系统已被引入,作为能量效能高峰神经网络(SNNS)执行的有前途的平台。SNN除了将变体时间尺度纳入其计算模型外,还结合了神经元和突触状态。由于这些网络中的每个神经元都连接到许多其他网络,因此需要高带宽。此外,由于SPIKE时间用于编码SNN中的信息,因此还需要精确的通信延迟,尽管当SNN被视为一个整体时,SNN对某些限制的尖峰延迟变化具有耐受性。提出了两维数据包切换的芯片网络网络,作为一种解决方案,以提供大规模尖峰的神经网络中可扩展的互连织物。3D-ICS也引起了很多关注,作为解决互连瓶颈的潜在解决方案。结合这两种新兴技术为IC设计提供了新的地平线,以满足新兴AI应用中低功率和小占地面积的高要求。,尽管容忍度是生物系统的自然特征,但将许多计算和记忆单元整合到神经形态芯片中遇到了可靠性问题,其中有缺陷的部分会影响整个系统的性能。本文介绍了R-NASH-A可靠的三维数字神经形态系统的设计和模拟,该系统明确地针对3D-ICS生物学大脑的三维结构,在网络中,网络中的信息以稀疏的尖峰时间和学习为基于局部上的上升式触发性依赖性依赖性依赖性 - 依赖性依赖性统计。我们的平台可实现尖峰网络的高集成密度和小尖峰延迟,并具有可扩展设计。r-nash是一种基于通过透过的VIA技术的设计,可促进基于Chip网络的聚类神经元上的尖峰神经网络实现。我们提供了与主机CPU的内存接口,可以在线培训和推断尖峰神经网络的推断。此外,R-NASH通过优雅的性能退化支持故障恢复。