本报告中品牌和徽标的使用仅供参考。上述品牌和徽标属于其各自所有者,不以任何方式归 ACCIÓ 所有。这是对半导体生态系统中公司、组织和实体的部分说明。可能有些公司、组织和实体未包含在研究中。
结论总之,对外部半导体的研究为了解半导体物理的基本原理及其在现代电子设备中的实际应用提供了宝贵的见解。通过精心操纵掺杂技术和材料特性,外部半导体在开发具有多种功能和应用的高性能半导体器件方面发挥着关键作用。在整个项目报告中,我们探讨了外部半导体的各个方面,包括它们的能带理论、电性能、制造工艺和未来前景。由于引入了掺杂原子,外部半导体表现出独特的电行为,这在带隙内产生了额外的能级并影响了材料的电导率和载流子浓度。了解这些特性对于设计和优化用于从微电子和光子学到可再生能源和 skaging 等广泛应用的半导体器件至关重要。这些过程需要精确控制和复杂的技术才能实现所需的设备性能和可靠性。先进的材料和制造技术,以及系统级封装 (SiP) 和 3D 集成等创新封装技术,正在推动外部半导体的未来向增强功能、小型化和能源效率的方向发展。展望未来,外部半导体有望在材料科学、设备工程和系统集成方面继续取得进步。物联网 (IoT)、人工智能 (AI) 和边缘计算等新兴技术为半导体研究人员和工程师带来了新的机遇和挑战。通过利用跨学科合作并采用可持续的制造实践,我们可以利用
Shu-Jen Wang*,Sebastian Hutsch,Felix Talnack,Marielle DeConinck,Shiyu Huang,Zongbao Zhang,Hans Kleemann,Yana Vaynzof,Stefan C. B. Mannsfeld,Frank Ortmann*和Karl Leo* S-J.Wang, Ms. M. Deconinck, Ms. S. Huang, Mr. Z. Zhang, Dr. H. Kleemann, Prof. Y. Vaynzof, Prof. K. Leo Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technical University of Dresden, 01069, Dresden, Germany Email.wang@tu-dresden.de; frank.ortmann@tum.de; karl.leo@tu-dresden.de S.4,85748 GARCHING b。德国慕尼黑F. Talnack先生,M。Deconinck女士,Z. Zhang先生,Y. Vaynzof教授,S。C。B. Mannsfeld教授,K。Leo升级的Electronics Dresden(CFAED),Dresden University,Dresden,Helmholtz Str。 18,01069德国德累斯顿M. Deconinck女士,Z.4,85748 GARCHING b。德国慕尼黑F. Talnack先生,M。Deconinck女士,Z. Zhang先生,Y. Vaynzof教授,S。C。B. Mannsfeld教授,K。Leo升级的Electronics Dresden(CFAED),Dresden University,Dresden,Helmholtz Str。18,01069德国德累斯顿M. Deconinck女士,Z.
2023 年,普渡大学宣布在半导体劳动力和创新领域建立四个志同道合的全球合作伙伴关系。普渡大学签署协议,成为印度政府的旗舰学术合作伙伴,使普渡大学成为印度半导体任务 (ISM) 的重要合作伙伴。正如 2023 年 5 月在日本举行的 G7 会议上宣布的那样,普渡大学主办了 UPWARDS 劳动力进步和半导体研发网络的首次会议,该网络由美光和东京电子牵头,11 所美国和日本大学与美国国家科学基金会建立了合作伙伴关系。6 月 19 日,普渡大学和台积电在安全微电子生态系统中心续签了合作伙伴关系。2023 年 12 月,普渡大学和比利时技术创新组织 imec 在普渡大学校园的创新与合作融合中心庆祝研发中心盛大开业。imec 在普渡大学的存在将有助于促进半导体技术的突破性进步。
二维(2D)过渡金属二核苷(TMDC)表现出令人兴奋的半导体特性和用于晶体管,光电设备,量子信息科学和能量任务的多功能材料化学。金属有机化学蒸气沉积(MOCVD)已成为一种有前途的技术,它可以增长2D TMDC,这要归功于其在此过程中执行高温外观生长并保持稳定的前体流量的能力。首先,我将讨论我们在蓝宝石和石墨烯基板上生长2D TMDC的MOCVD过程,以及其在功能化表面或Damascene结构上低温沉积的能力。[1,2]第二,我将讨论我们在TMDC增长期间使用RE [3]和V的TMDC替代掺杂的最新进展。一些掺杂剂可以调节载体浓度,引入磁性,甚至治愈TMDC中的缺陷。第三层TMDC半导体可能会引起近室温度设备应用,因为它们的热电离能量减少了,与单层相比。i将介绍我们的外延1到3层MOS 2,由MOCVD生长的逐层和结果。,最后,使用TMD作为构建块,我们可以用固有的偶极矩创建破坏对称性的2D材料。最新结果[4,5],包括将2D WS 2和MOS 2转化为2d Janus WSSE和MOSSE以及由Janus TMD和标准TMDS组成的杂波的电荷转移研究。
先进的材料分析和表征(AMAC)硕士课程提供了有关主要研究工具的高级技术技能培训。amac位于俄勒冈州(CAMCOR)的高级材料表征中心。CAMCOR成立于2010年,是一个全面的服务,全面的材料表征中心,是研究人员的国家资源,学生的培训理由以及独特的仪器的行业合作伙伴关系。
简介:Samuel Carter 博士是物理科学实验室 (LPS) 的研究员主管,从事固态自旋系统的量子传感和量子计算实验研究。他是固态量子比特量子光学、自旋相干控制和固体缺陷自旋量子传感方面的专家。2004 年,他在加州大学圣巴巴拉分校获得物理学博士学位,与 Mark Sherwin 教授合作研究太赫兹驱动量子阱,并在 NIST 和科罗拉多大学博尔德分校与 Steve Cundiff 教授一起从事半导体超快光谱博士后研究。在美国海军研究实验室从事固态量子信息科学工作 15 年后,Carter 博士加入 LPS,从事半导体自旋系统的量子传感和量子计算研究。