俄罗斯联邦海域和内河航行船舶污染防治法、远洋船舶装卸设备规则、远洋船舶载重线规则,如适用,远洋船舶设备规则、营运船舶入级检验规则、船舶建造和船舶材料及产品制造技术监督规则的相关要求,以及在建船舶技术监督指南和营运船舶技术监督指南的相关规定。
摘要:航运业正经历技术转型时期,旨在增加碳中性燃料的使用。采用替代燃料推进的船舶订单趋势明显。航运业未来的燃料市场将更加多样化,依赖多种能源。满足脱碳要求的一种非常有前途的方法是,通过整合当地可再生能源、岸电系统和电池储能系统 (BESS),使用可持续电能运营船舶。随着运营和订购的电池/混合动力推进船舶数量不断增加,这种船舶推进方式变得越来越普遍,尤其是在短程船舶领域。本文回顾了电气化或混合动力的最新研究、使用船舶 BESS 的不同方面以及混合动力推进船舶的类别。它还回顾了用于船舶混合动力推进的几种类型的储能和电池管理系统。本文介绍了 BESS 系统在调峰、负载平衡、旋转备用和负载响应方面的不同海洋应用。该研究还介绍了领先的海运市场制造商提供的混合动力/电力推进系统的最新发展。
货油处所结构构件的厚度应符合下列规定: (1) 外板厚度应不小于按第 3 篇第 4 章 302.、304.、305. 和 404. 中的公式计算所得之值,公式中的 1.5 应为 2.0。(2) 干舷甲板的甲板板厚度应不小于按第 3 篇第 5 章 301 中的公式计算所得之值。公式中的 1.5 应为 2.0。(3) 当肋骨、横梁、扶强材和其他构件的尺寸由剖面模数规定时,如果其仅由翼缘板、特殊型材或腹板和面板组成,则腹板厚度应不小于按下列公式计算所得之值。但当腹板深度因强度以外的原因而特别加深时,前述要求可予修改。
本规范分为以下部分:第 I 部分“入级”;第 II 部分“船体”;第 III 部分“设备、布置和舾装”;第 IV 部分“稳性”;第 V 部分“分舱”;第 VI 部分“防火”;第 VII 部分“机械设备”;第 VIII 部分“系统和管道”;第 IX 部分“机械”;第 X 部分“锅炉、热交换器和压力容器”;第 XI 部分“电气设备”;第 XII 部分“制冷装置”;第 XIII 部分“材料”;第 XIV 部分“焊接”;第 XV 部分“自动化”;第 XVI 部分“纤维增强塑料船舶的结构和强度”;第十七部分“船级符号中的识别标记和描述性符号
(缩写为 DSS(XX) )应根据指南的要求加贴在船舶的分类字符上。相关智能系统在“XX”中描述。例如,对于设有本指南规定的船体结构监测系统的船舶,应在船舶结构监测系统上加注“数字智能船舶(船体监测)”(缩写为DSS(HM))标记。
摘要:船舶内和船舶周围的空气质量受各种污染源的控制,这些污染源对于航运环境来说是独一无二的。这使得船上的生活和工作条件与城市或建筑物内的情况大不相同。为了深入了解这些差异,需要了解船上的趋势和绝对污染物量。但是,由于尺寸、重量或安全原因,通常无法安装参考仪器来监测 NO 2 、NO、O 3 、颗粒物和其他环境参数。因此,包含各种传感器的更紧凑的设备是一个不错的选择。但是,只有在充分了解这些传感器在航运环境中的行为和性能时,才有可能使用这些传感器。为了研究这一背景,我们被允许将一艘 36 年船龄的近岸作业船上的传感器测量结果与参考级仪器的测量结果进行比较。通过在几艘内陆船上组织的测量活动获得了传感器的额外行为信息。这篇文章表明,气体和颗粒物传感器记录的趋势是可靠的,但检测限不足、噪音较大、校准不完善和传感器误差会导致一些可靠性限制。
(1) 每年制冷剂泄漏量应不超过每个系统制冷剂总充注量的 10%(质量)()。(2) 在设备中可能泄漏制冷剂的处所应至少配备一个气体探测器。当制冷剂浓度超过预定限值(例如,氨为 25 或卤代氟碳化合物为 300 )时,探测器应在有人值守的位置发出视觉和声音警报。(3) 对于制冷剂回收,制冷剂压缩机应能够将系统充注量抽空到储存容器中,并且该储存容器的容量应至少为最大排放量的 125%。(4) 必要时,船上应配备臭氧消耗物质管理程序。本程序应包括: (A) 船舶名称和船级编号 (B) 所有制冷剂系统的图表和组件说明 (C) 详细说明控制制冷剂损失、泄漏、排放和处置的方法的程序 (D) 记录制冷剂库存的方法和手段 (a) 船上制冷剂的供应 (b) 由于泄漏或系统维护而向大气排放的制冷剂 (c) 回收的制冷剂及其储存位置 (d) 制冷剂处置至陆基接收设施 (E) 制冷剂数据表 (F) 消防系统规范,包括灭火剂数据表
氨浓度(ppm) 对人体的影响 5 至 10 可通过气味察觉 50 感觉不适 100 感觉刺痛 200 至 300 刺激眼睛和喉咙 300 至 500 仅可短时间忍受(20 至 60 分钟) 2 500 至 5 000 短时间内危及生命(约 30 分钟) 5 000 至 10 000 呼吸停止,短时间内致命