摘要:化学疗法代表了治疗癌症患者的最有效的策略之一,即使是无法治愈的恶性肿瘤患者,也至少暂时带来了有利的变化。但是,由于耐药性的发展,大多数患者在经过一定的治疗周期后反应较差。对癌症患者管理的药物的抵抗力极大地限制了患者可以实现并继续是严重临床困难的好处。在介导抗癌药物耐药性的机制中,河马信号通路由于其成分的显着致癌活性(例如,YAP和TAZ)及其可药物的特性,引起了越来越多的注意力。本综述将重点介绍当前对河马信号通路如何调节肿瘤细胞中抗癌药物耐药性的理解,以及目前针对hippo途径的药理干预措施,旨在消除恶性细胞并潜在地治疗癌症患者。
抽象的哺乳动物细胞具有调节细胞功能的各种不同细胞外刺激的能力。这通常涉及与细胞表面受体结合的配体以及随后的细胞内信号通路的激活。这些途径可能导致基因表达模式的变化,进而调节细胞生长,分化,迁移和功能。一种重要的细胞表面受体类型是受体酪氨酸激酶(RTK)。响应于配体结合的响应,rtks二聚,然后互相反磷酸化,从而导致下游途径的激活。虽然这些途径中的信号传导蛋白对于正常的细胞生长控制很重要,但如果不当调控它们可能导致不受控制的生长,有时甚至有时会导致癌症。因此,它们通常被认为是化学治疗药物药物靶标的良好候选者。RTK可以激活多个不同的信号通路。这些途径中的某些信号蛋白可以与其他RTK激活途径串扰,并且其中一些可以通过RTKS激活之外的多种机制激活。虽然RTK激活了各种不同的信号蛋白和途径,但在本综述中,我们将讨论包括MAPK途径,HER2/NEU途径,MTOR,MTOR和PAK激酶在内的几个关键途径的组件。我们概述了这些途径在细胞信号传导中的作用,并讨论如何将这些途径的不同组成部分视为癌症治疗的靶标。
植物生存的环境不断考验着它们应对各种生物和非生物胁迫的能力。许多这样的挑战导致活性氧 (ROS) 过度积累,从而造成一种称为氧化应激的危险细胞状况。尽管不受控制的 ROS 会对细胞成分造成严重损害,但现在很明显,低水平或中等水平的这些活性分子发挥着重要的信号传导功能。从微调发育过程到协调快速防御反应,ROS 产生和清除之间的微妙平衡对于植物的生长和生存至关重要。本综述全面研究了植物如何产生和管理 ROS、其抗氧化防御网络的分子结构以及支持适应波动环境条件的复杂氧化还原信号事件。重点介绍了最近(2020-2025 年)在了解特定抗氧化途径和氧化还原调节的转录程序如何提高对干旱、盐度、极端温度和重金属的耐受性方面取得的进展。我们还讨论了 ROS 与激素的整合、抗氧化剂与植物-微生物相互作用之间的相互作用,以及旨在增强抗逆能力的新兴生物技术方法(包括基因编辑)。通过综合当前的见解并强调悬而未决的问题,本综述强调了氧化还原稳态在塑造植物适应性、生产力和抵御全球气候日益加剧的压力方面的重要性。
15。Grigsby J,Betts B,Vidro-Kotchan E,Culbert R,Tsin A.丙烯醛在糖尿病性视网膜病中的可能作用:视网膜色素上皮细胞在高血糖中的VEGF/TGFβ信号传导途径的参与。当前的眼睛研究[Internet]。2012年11月1日[引用2023年12月5日]。;可从:https://www.tandfonline.com/doi/full/10.3109/02713683.2012.713152
Wnt信号在调节癌症的生物学行为中起着重要作用,并且已经开发出许多针对该信号的药物。最近,一系列研究表明,Wnt信号传导可以调节DNA损伤反应(DDR),这对于维持细胞中的基因组完整性至关重要,并且与癌症基因组不稳定性密切相关。已经开发出许多药物来靶向癌症中的DNA损伤反应。值得注意的是,Wnt和DDR途径的不同组成部分参与了串扰,形成了一个复杂的调节网络,并为癌症治疗提供了新的机会。在这里,我们简要概述了癌症研究领域中的Wnt信号传导和DDR,并回顾了这两种途径之间的相互作用。最后,我们还讨论了针对Wnt和DDR作为潜在癌症治疗策略的治疗剂的可能性。
1 UMR CNRS 7021,实验室生物成像和病理,肿瘤信号传导和治疗目标团队,药房教职员工,74 Route du Rhin,67405,法国Illkirch 67405; quentin.fuchs@unistra.fr(q.f.); marina.pierrevelcin@etu.unistra.fr(M.P。); melissa.messe@etu.unistra.fr(M.M.); benoit.lhermitte@chru-strasbourg.fr(B.L.); monique.dontenwill@unistra.fr(M.D.)2 Strasbourg大学医院,1 AvenueMolièRe,67098法国Strasbourg 3小儿科肿瘤学,Dana Farber Institute,Boston,Boston,MA 02215,美国; Anne flance.blandin@gmail.com 4 Inserm U1258,UMR CNRS 7104,Institut degénénénétiqueet de BiologieMoléculaireet Chitule et Colleule(IGBMC),University de Strasbourg,67400 Illkirch,67400 Illkirch,France,France; papin@igbmc.fr 5 Strasbourg大学医院神经外科,法国斯特拉斯堡67098 AvenueMolièRe; higoandres.coca@chru-strasbourg.fr 6儿科学系,儿科,斯特拉斯堡大学医院,1 AvenueMolièRe,67098法国Strasbourg,法国67098 *通信 *通信:电话。: + 33-388128396;传真: + 33-388128092
背景嵌合抗原受体(CAR)T细胞由于慢性抗原刺激引起的CAR-T功能障碍而在实体瘤中具有LIM临床功效,并且在肿瘤微环境中抑制信号。细胞因子介导的信号通过JANUS-激酶信号换能器和转录激活因子(JAK/STAT)途径已显示可调节T细胞分化,并增加效应子功能和持久性。我们假设可以部署合成生物学方法来确定通过调节特定JAK/STAT活性来改善治疗性T细胞功能的合成受体。在没有外部配体(称为合成途径激活剂(SPA))的情况下,旨在参与构成型JAK/Stat信号的合成受体库,并筛选为增强工程CAR-T细胞的抗肿瘤活性的能力。我们在集成的电路T细胞(ICT)中表达了Spa库,它们是表达逻辑门并通过非病毒CRISPR介导的转基因敲击生成的工程T细胞。我们通过流式细胞仪测量了急性和慢性肿瘤挑战测定法,cytokine产生,cyto-Kine产生,STAT磷酸化谱以及效应子/记忆表型的细胞毒性。随后在鼠异种移植肿瘤模型中测试了表达铅SPA的逻辑门构建体,以评估抗肿瘤功效和药代动力学。结果某些合成途径激活剂(称为I类水疗中心)表明,在体外慢性肿瘤挑战测定中,抗肿瘤功效提高,保留效应子功能,并在慢性抗原博览会上保持了茎的标记。这种改善的体外抗肿瘤功效转化为异种移植实体瘤模型中改善的细胞扩张和效力:表达SPA的细胞的剂量明显低于对照ICT细胞的剂量明显低于剂量。重要的是,尽管它们增加了增殖潜力,但表达水疗中心的ICT并未表现出细胞因子独立的产物,并在体内降低了肿瘤清除率。结论我们已经开发了一类SPA,可以参与组成型Stat信号传导,并显着增强临床前测定中治疗性T细胞的抗肿瘤活性。SPA-表达T细胞表现出增加的效应功能的膨胀和保留,从而完全清除了非常低的T细胞剂量的大型异种移植肿瘤。我们的铅I类水疗中心已纳入AB-2100,这是一种综合电路T细胞候选药物,旨在治疗透明细胞肾癌(CCRCC)。
1 po´ s-Gradual in Shic and Sau o of Sau,Rio Grande Do Sul of of Sau of Sau和Sau学院里奥里奥·格兰德(Rio Grande Do)的宗座天主教大学,巴西Porto Alegre,4号药品和药物化学系,埃伯哈德·卡尔斯(Eberhard Karls),埃伯哈德·卡尔斯(Eberhard Karls),埃伯哈德·卡尔斯(Eberhard Karls),图宾根(Tübingen),5个社会和生活学院po´ s-Gradual in Shic and Sau o of Sau,Rio Grande Do Sul of of Sau of Sau和Sau学院里奥里奥·格兰德(Rio Grande Do)的宗座天主教大学,巴西Porto Alegre,4号药品和药物化学系,埃伯哈德·卡尔斯(Eberhard Karls),埃伯哈德·卡尔斯(Eberhard Karls),埃伯哈德·卡尔斯(Eberhard Karls),图宾根(Tübingen),5个社会和生活学院po´ s-Gradual in Shic and Sau o of Sau,Rio Grande Do Sul of of Sau of Sau和Sau学院里奥里奥·格兰德(Rio Grande Do)的宗座天主教大学,巴西Porto Alegre,4号药品和药物化学系,埃伯哈德·卡尔斯(Eberhard Karls),埃伯哈德·卡尔斯(Eberhard Karls),埃伯哈德·卡尔斯(Eberhard Karls),图宾根(Tübingen),5个社会和生活学院po´ s-Gradual in Shic and Sau o of Sau,Rio Grande Do Sul of of Sau of Sau和Sau学院里奥里奥·格兰德(Rio Grande Do)的宗座天主教大学,巴西Porto Alegre,4号药品和药物化学系,埃伯哈德·卡尔斯(Eberhard Karls),埃伯哈德·卡尔斯(Eberhard Karls),埃伯哈德·卡尔斯(Eberhard Karls),图宾根(Tübingen),5个社会和生活学院
摘要:Hippo 信号通路最初于 1995 年在果蝇中发现,它通过抑制增殖和促进细胞凋亡,在器官大小控制和肿瘤抑制中发挥关键作用。大型肿瘤抑制因子 1 和 2 (LATS1/2) 直接磷酸化 Yki 直系同源物 YAP(yes 相关蛋白)及其旁系同源物 TAZ(也称为 WW 结构域转录调节因子 1 [WWTR1]),从而抑制它们的核定位和与转录辅激活因子 TEAD1-4 的配对。许多研究实验室的认真努力已经确定了错误调节的 Hippo 信号在肿瘤发生、上皮间质转化 (EMT)、致癌干细胞以及最近的耐药性发展中的作用。Hippo 信号成分是致癌适应的核心,它促进了许多癌症对靶向治疗药物的耐药性发展,包括 KRAS 和 EGFR 突变体。 2001年,美国食品药品监督管理局(US FDA)首次批准伊马替尼酪氨酸激酶抑制剂,为美国FDA和国家药品监督管理局(NMPA)批准近100种小分子抗癌药物铺平了道路。然而,低反应率和耐药性的发展对改善癌症患者的无进展生存期(PFS)和总生存期(OS)构成了重大障碍。越来越多的证据使科学家和临床医生能够制定针对癌细胞的治疗方法,并通过持续监测肿瘤演变和致癌适应来控制耐药性的发展。在这篇综述中,我们重点介绍了Hippo信号与其他致癌驱动因素相互作用的新兴方面,以及如何将这些信息转化为联合疗法,以针对多种侵袭性肿瘤和耐药性的发展。
。CC-BY-NC 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 1 月 12 日发布了此版本。;https://doi.org/10.1101/2022.12.20.521212 doi:bioRxiv 预印本