帕金森氏病(PD)是第二大流行的神经退行性疾病,特征是Bradykinesia,Tremors和姿势不稳定性[1,2]。PD的主要原因是黑质中多巴胺能神经元的变性[3,4]。已经观察到免疫系统有助于PD的进展[5,6]。CNS炎症,包括反应性小胶质细胞和星形胶质细胞激活,增强了[7-9]。然而,中央免疫系统与PD外周免疫系统之间的关系尚不清楚。研究表明,周围免疫细胞迁移到中枢神经系统并触发炎症。此外,循环中的免疫细胞,免疫蛋白和细胞因子都与PD相关[10]。探索周围免疫特性与PD之间的联系,我们采用了Men-Delian随机化(MR)方法[11]。MR评估了博览会和结果之间的因果关系,并用于研究疾病危险因素[12]。使用大型欧洲全基因组关联研究(GWAS)的数据,我们进行了两样本的MR分析,发现单核细胞中CX3CR1的表达与PD的风险有关。
审查深度脑刺激(DBS)的抽象目的是在包括帕金森氏病,肌张力障碍,震颤和图雷特综合征在内的多种运动障碍中建立的治疗方法。在这篇评论中,我们将审查并讨论最新发现,包括但不限于临床证据。最新发现的新DBS技术包括新型硬件设计(电极,电缆,植入脉冲发生器),可实现新的刺激模式和适应性DBS,可为患者病情的瞬间变化量身定制潜在的刺激。更好地理解运动障碍的病理生理学和功能解剖学对于研究DBS对脑脑运动区域,Meynert核心核的影响的影响至关重要。最终,神经外科实践通过更准确的目标可视化或组合靶向进行了改善。一个上升的研究领域强调桥接神经调节和神经保护。总结DBS治疗的最新进展带来了更多的可能性,可以有效治疗运动障碍的人。未来的研究将着重于改善自适应DB,领导更多有关新目标的临床试验,并探索神经调节对神经保护作用。
帕金森氏病(PD)是一种严重的神经系统疾病,其特征是失去自愿运动和运动的大大减慢。传统上归因于环境因素,但最近的研究强调了遗传学在PD发作和进展中的重要作用。这项研究旨在通过分析来自四个数据集(83个PD和53个控制质量Nigra样品)的基因表达数据来鉴定PD中差异表达的基因(DEG)和相关途径,这些数据来自基因表达综合(GEO)数据库。使用GEO2R,我们通过富集确定了常见的DEG并进行了功能注释和KEGG途径富集分析。我们使用StringDB构建了蛋白质 - 蛋白质相互作用(PPI)网络,并通过CytoHubba鉴定了集线器基因。结果显示,在多巴胺能突触和可卡因成瘾等途径中富含18个临界DEG。关键集线器基因包括酪氨酸羟化酶(Th),溶质载体家族18构件A2(SLC18A2)和钾在内部整流的通道亚家族J成员6(KCNJ6)。这些发现提供了对PD分子机制的见解,突出了潜在的生物标志物和治疗靶标。本研究为未来的研究和制定帕金森氏病的有效治疗策略提供了强大的框架。
帕金森氏病(PD)是一种神经退行性疾病,与尼格拉(SN)中脑多巴胺(DAN)神经元的进行性死亡有关。由于有人提出PD患者表现出总体促炎状态,并且由于星形胶质细胞是大脑炎症反应的关键介体,因此我们在这里试图解决星形胶质细胞介导的炎症信号传导是否可能导致PD神经病理学。为此,我们从代表具有PD和健康对照的患者的诱导多能干细胞(IPSC)中产生了星形胶质细胞。转录组分析与对照组相比,PD星形胶质细胞中鉴定出独特的炎症基因表达特征。尤其是,发现促炎细胞因子IL-6高度表达并被PD星形胶质细胞释放,并被发现在DAN中诱导毒性。从机械上讲,神经元细胞死亡是由人类PD神经元中表达的IL-6受体(IL-6R)介导的,导致STAT3的下游激活。通过添加FDA批准的抗IL-6R抗体Tocilizumab阻止了IL-6R的阻塞,阻止了PD神经元死亡。在PD的早期阶段,在患者的死后脑组织中检测到过表达IL-6R的SN神经元和表达IL-6的反应性星形胶质细胞。我们的发现突出了星形胶质细胞介导的炎症信号传导在PD中神经元丧失中的潜在作用,并为未来治疗剂的设计铺平了道路。
昼夜节律功能障碍是帕金森病(PD)的标志,在PD患者中已经描述了核心时钟基因BMAL1的表达降低。bmal1是核心昼夜节律函数所必需的,但也具有非节律函数。种系BMAL1缺失会导致小鼠的脑氧化应激和突触丧失,并且会加剧多巴胺能神经变性,以响应毒素MPTP。在这里,我们检查了细胞类型 - 特异性BMAL1缺失对体内多巴胺能神经元活力的影响。我们观察到,BMAL1的全球,产后缺失导致酪氨酸羟化酶 +(Th +)多巴胺能神经元的自发丧失。这不是通过光诱导的行为昼夜节律破坏来复制的,也不是由星形胶质细胞或小胶质细胞特异性BMAL1缺失引起的。然而,泛神经元或神经元特异性BMAL1缺失会导致SNPC中Th +神经元的细胞自主丧失。bmal1缺失并未改变α-突触核蛋白原纤维注射后神经元丧失的百分比,尽管BMAL1 -KO小鼠在基线时的神经元较少。转录组学分析表明,参与氧化磷酸化和帕金森氏病的途径失调。这些发现证明了BMAL1在调节多巴胺能神经元存活中的细胞自主作用,并且可能对PD的神经保护具有重要意义。
帕金森氏病是由黑质Nigra Pars Compacta的多巴胺能神经元的选择性脆弱性和细胞丧失引起的,因此,纹状体多巴胺消耗。在帕金森疾病疗法中,多巴胺的损失是由L-DOPA的给药来抵消的,L-DOPA最初在改善运动节目Symp TOMS方面有效,但随着时间的流逝,L-DOPA诱发的疾病诱发了不可控制的疾病运动的负担。迄今为止,没有有效的运动障碍治疗。多巴胺能和5-羟色胺能系统与内在联系在一起,近年来,在L-多巴巴诱导的发育不良中,已经确立了突触前5-HT1A/B受体的作用。我们假设后突触后的5-羟色胺受体可能发挥作用,并涉及5-HT4受体对运动症状和L-DOPA诱导的运动障碍的调节对帕金森氏病的单侧6-OHDA小鼠模型中的l-dopa诱导的运动障碍。给药67333卢比,一种5-HT4受体部分激动剂,可降低L-DOPA诱导的运动障碍,而不会改变L-Dopa的促动力效应。在背外侧纹状体中,我们发现5-HT4受体主要表达在含D2R的培养基神经元中,并且其表达通过多巴胺消耗和L-DOPA治疗改变。我们进一步表明,5-HT4受体激动剂不仅降低了L-DOPA诱导的运动障碍,而且还可以增强纹状体合理培养基中棘神经元中CAMP-PKA途径的激活。综上所述,我们的发现表明,后突触后5-羟色胺受体5-HT4的激动剂可能是减少L-DOPA诱导的运动障碍的一种新型治疗方法。
摘要:氧化应激介导的损伤通常是帕金森氏病(PD)的下游结果,帕金森氏病(PD)的标志是大脑的黑骨术区域内多巴胺能神经元的急剧下降,这构成了患者有症状的运动降低。调节氧化应激水平可能会在预防PD病理学方面采用有益的方法。在这里,我们评估了烟酰胺腺苷磷酸腺嘌呤(NADPH)氧化酶(NOX)抑制剂,这是由Aptabio Theraphators与NOX-1,2和4。利用N27大鼠多巴胺能细胞和C57BL/6小鼠,我们确定了α-核蛋白预先形成的纤维(PFF)诱导的蛋白质聚集的暴露,这是PD病理学的标志。对新颖化合物的体外评估表明,细胞活力的增加并降低了在10 nm最佳浓度下暴露于PFF的细胞毒性,ROS和蛋白质聚集(Thio thio-flavin-t染色)。同时,口服处理在行为测试中缓解了运动率,例如后肢紧握,旋转rot,极点,嵌套和修饰测试,通过减少蛋白质聚集,基于营救的多巴胺能神经元损失。在纹状体和腹中脑区域内抑制NOX-1,2和4,包括Nigra Compacta(SNC)有助于神经保护/恢复效应,使其成为PD的潜在治疗选择。
帕金森氏病(PD)是最常见的退化性疾病之一。最常见的特征是神经元死亡,在lewis植入术中刘易斯夹杂物积累后,在黑质区域的多巴胺能神经元中,其临床症状如运动迟缓,自主神经功能障碍和dionstonia痉挛等临床症状。迄今尚未揭示其发病机理的确切分子机制。并且缺乏对PD的有效治疗方法,这给患者,家庭和社会带来了负担。CRISPR CAS9是一项强大的技术,可以通过快速发展来修改目标基因组序列。越来越多的科学家利用这种技术来进行研究相关的神经退行性疾病,包括PD。但是,涉及的复杂性使组织和总结现有发现以促进更清晰的理解变得迫切。在这篇评论中,我们描述了CRISPR CAS9技术的开发和最新的衍生基因编辑系统。然后,我们专注于CRISPR CAS9技术在PD研究中的应用,总结了新型与PD相关的医学模型的构建,包括细胞模型,小动物模型,大型哺乳动物模型。我们还讨论了与上述模型中使用CRISPR CAS9进行PD处理有关的新方向和目标分子。最后,我们提出了关于CRISPR CAS9技术系统开发和优化的方向的观点,以及将来它应用于PD和基因治疗。所有这些结果为研究PD提供了有价值的参考和增强的理解。
帕金森病 (PD) 是第二大最常见的神经退行性疾病,其发病率随着年龄增长而上升,男性更容易患上该病 [1]。目前,PD 缺乏确切的诊断方法,因此临床诊断仍然是确诊的基本依据 [2,3]。医护人员根据主要症状进行临床诊断,并使用诊断标准排除其他可能的原因 [2,3]。PD 的典型运动症状包括静止性震颤、运动迟缓和僵硬 [4]。根据研究和统计方法的不同,估计全球每年 PD 发病率在十万人中 8.7 至 19 人之间 [5]。目前,全球 PD 患者超过 1000 万 [6]。研究人员普遍认为 PD 是一种受多种因素影响的复杂疾病。这些因素包括遗传因素(常染色体显性、常染色体隐性、易感基因)、环境因素(如接触碳氢化合物)、便秘、体力活动、吸烟(尼古丁)和咖啡因摄入量 [7-9]。该疾病被认为是由于黑质 (SN) 最初受损,特别是其致密区受损,导致 SN 活动减弱,同时基底神经节其他区域 [包括丘脑底核 (STN)] 抑制丧失,从而引起过度活动 [10]。PD 的典型病理变化包括中脑多巴胺能 (DAergic) 神经元的快速丢失以及脑内 α - 突触核蛋白聚集体形成的路易体数十年的积累 [9,11,12]。
疾病名称:婴儿神经轴索营养不良 ICD 10:G23.0 同义词:INAD、NBIA2、磷脂酶 A2 相关神经变性 (PLAN)、Seitelberger 病、伴有脑铁沉积的神经变性 A 疾病摘要:婴儿神经轴索营养不良 (INAD) 是一种与 PLA2G6 基因突变相关的神经变性疾病。它是继泛酸激酶相关神经变性 (PKAN,以前称为 Hallervorden-Spatz 病) 之后第二常见的伴有脑铁沉积 (NBIA) 的神经变性类型。INAD 以常染色体隐性方式遗传。 PLA2G6 编码钙非依赖性磷脂酶,与婴儿神经轴突营养不良 (INAD)、非典型神经轴突营养不良 (NAD) 和肌张力障碍-帕金森病有关。PLA2G6 表达于线粒体健康,并保护线粒体健康。它对膜稳态和钙信号传导也很重要。INAD 的组织学特征是轴突球体。表型上,INAD 的特征是心理运动退化,发病早于 6 个月至 3 岁之间。肌张力低下发生早,伴有严重虚弱,可能被痉挛取代。许多 INAD 患者还会出现进行性痴呆。患者通常在 10 岁之前因呼吸系统并发症死亡。患者可能因延髓功能障碍而接受胃造口管和气管切开术,有些患者可能需要手术矫正脊柱侧弯以改善呼吸状况。 INAD 患者的主要麻醉问题是他们术前呼吸状况不佳,这是由于气道清除和呼吸力学较差导致的,因此通常需要术后插管。