tl; dr3D中的湍流不仅仅是“只有一个维度”自回归模型努力通过时间跟踪复杂的涡旋结构生成的建模使我们可以直接从流量状态的流动状态中进行样品,从而在跟踪问题
图 1. 近尾流湍流强度分布 [1] ...................................................................................................... 2 图 2. 远尾流湍流强度分布 [2] ...................................................................................................... 3 图 3. 2.06 倍叶片直径处的相对湍流强度 [3] ...................................................................................... 4 图 4. 近尾流轴向速度云图(左)和切向速度云图(右) [4] ............................................................. 5 图 5. 2.5 倍涡轮机直径处的实验和 CFD(LES)湍流强度 [6] ............................................................. 6 图 6. CFD(LES)湍流图 7. 基本风洞示意图 ...................................................................................................................................... 8 图 8. 蜂窝类型 [7] ...................................................................................................................................... 11 图 9. 湍流减少因子 [10] ............................................................................................................................. 15 图 10. 用于模型风力涡轮机的 NACA 4412 叶片 ............................................................................................. 23 图 11. 模型风力涡轮机轮毂 .............................................................................................
一系列飞行试验展示出一种测量空对地倾斜路径上路径分辨光学湍流量(如 C 2 n)的新方法。本文介绍了数据采集试验,试验涉及两束激光束在 8 公里倾斜路径上在一个轨道空中平台和一个静止地面终端之间传播。地面和飞行中的测量数据同时收集,并使用差分倾斜方差 (DDTV) 技术计算 C 2 n 剖面。本文介绍了 DDTV 技术,该技术能够对湍流强度进行路径分辨测量,从而得到 C 2 n 剖面。得到的湍流剖面揭示了最靠近飞机的统计数据中被认为是来自飞机边界层的气动光学污染。因此,气动光学环境的污染可以相对于其余大气传播路径进行量化。最后,本文介绍了将测量的大气湍流剖面与最先进的大气模型进行比较的分析。这些分析超越了 C 2 n 比较,并展示了测量与建模在关键定向能系统传播参数方面的比较,例如格林伍德频率、相干直径、里托夫数、等晕角、泰勒频率、开环抖动和开环斯特列尔比。在空对地和地对空定向能系统的背景下分析了斜路径湍流。
摘要。本文介绍了 COTUR(使用激光雷达测量湍流相干性)活动期间的测量策略和收集的数据集。该现场试验于 2019 年 2 月至 2020 年 4 月在挪威西南海岸进行。相干性量化了涡流的空间相关性,在海洋大气边界层中鲜为人知。这项研究的动机是需要更好地表征横向相干性,横向相干性部分决定了多兆瓦海上风力涡轮机的动态风荷载。在 COTUR 活动期间,使用陆基遥感技术研究了相干性。仪器设置包括三个远程扫描多普勒风激光雷达、一个多普勒风激光雷达剖面仪和一个被动微波辐射计。 WindScanner 软件和 LidarPlanner 软件同时用于将三个扫描头定位到由激光雷达风廓线仪提供的平均风向。辐射计仪器通过提供大气边界层中的温度和湿度廓线来补充这些测量。扫描光束略微向上指向以记录表面层内和表面层上方的湍流特性,从而进一步了解表面层缩放在模拟海上风力涡轮机湍流风荷载方面的适用性。初步结果显示横向相干性随扫描距离的变化有限。横向相干性的略微增加
本报告调查了使用数据驱动方法的使用,即现场倒置和机器学习(FIML),以改善常规的湍流模型,例如Spalart-Allmaras模型和Menter SST K-ω模型。使用有限的训练数据使用基于ML的方法来产生可推广到大量流量配置的校正的关键方面之一是设计适当的“功能”(输入ML模型)。基于FIML方法的指导的模型以分析形式介绍。在本报告的末尾列出了本研究中已经进行了实验的其他功能列表。尽管这些校正中没有使用这些,但它们被包括在当前工作中使用的完整过程。
准确的湍流预测非常昂贵,因为它需要一个限定时间的时间步骤来推进管理方程以解决快速发展的小规模动作。随着各种机器学习(ML)算法的最新开发,有限的时间预测成为减轻计算负担的有希望的选择之一。然而,对小规模动议的可靠预测具有挑战性。在这项研究中,开发了基于生成对抗网络(GAN)的数据驱动的ML框架的预测网络,用于快速预测湍流,使用相对较少的参数,高精度降至最小的湍流。特别是,我们使用直接的数值模拟数据在有限的交货时间内学习了二维(2-D)腐烂的湍流。开发的预测模型可以在有限的交货时间内准确地预测湍流场,最多是Eulerian积分时间尺度的一半,大规模动作保持相当相关。量表分解用于解释可预测性,具体取决于空间量表,并研究了潜在变量在歧视者网络中的作用。GAN在预测小规模的湍流中的良好性能归因于潜在变量的尺度选择和尺度相互作用能力。此外,通过利用预测网络作为替代模型,开发了一个名为ControlNet的控制模型,以识别驱动流量段的时间演变的扰动模型,以优化指定目标函数的方向。
实现了对大气参数的依赖性。提出了新颖的简化指标来评估CBC的性能。几个光束pro纤维(超高斯,截短的高斯等)和gemetries在远端的最大强度方面进行了分析。提出了取决于油炸半径的PCBC效率的近似公式。将CBC建模的结果与湍流气氛中高斯束传播模型的结果进行了比较。分析了CBC性能对C N 2参数,范围和高程角的依赖性。可以得出结论,如果没有有效的自适应光学系统,CBC在中和远程传播中的应用是不切实际的。©2020中国军械学会。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
湍流对远程成像系统的影响表现为图像模糊效应,通常由系统中存在的相畸变量化。可以想象,根据传播体积内的大气湍流强度,可以理解模糊效果。获得湍流强度曲线的一种方法是使用动态范围的雷利信标系统,该系统利用沿策略性的信标沿着传播路径的范围进行了差异,从而有效地推导了影响光学成像系统的模糊畸变的特定路径段贡献的估计。已经设计了一种利用此技术的系统,并且已经构建了用于测试的原型。该系统被称为TARDIS,该系统代表湍流和气溶胶研究动态询问系统。TARDIS是一种光学传感系统,基于在相对不变的湍流诱导的波前扰动的静态时期内动态更改收集传感器和瑞利信标之间的范围。一种概念收集的场景由信标组成,在该信标中,基于激光脉冲和摄像头快门速度,空气分子和气溶胶颗粒反向散射图像在不同距离捕获的距离。获得基于TARDIS的湍流强度曲线的基于测量的估计是基于整理分段的折射率结构参数,𝐶𝐶2,值为大气的特定层。这些𝐶𝐶𝐶𝐶𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠2值是从炸参数段(0𝑖𝑖)中发展出来的,这些值是从Shack-Hartmann波前传感器上的相邻测量值中推导的。从传感系统收集光圈上存在的相位方差的平均值估计炸参数的单个值。跨孔的估计相方差的平均值是由从Shack-Hartmann波前传感器测得的梯度重建的区域倾斜砖中构建的。本文提供了理解大气湍流的基础理论,提供了当前可用的湍流估计技术的参考,并提供了针对TARDIS的细节,层析成像湍流估计方法以及收集概念数据的初始证明的分析。这项研究提供了一种新颖的手段,用于量化大气湍流的强度特征。利用概述的方法,使用了扰动波前的直接测量,这与估计湍流强度曲线的其他方式有不同。由于这种差异,可以使用动态范围的信标来产生湍流概况估计值,以增加对其他方法的置信度,或用作不容易受到相同误差源影响的独立测量技术。此外,由于该技术利用了波前的直接测量,因此可以想象,这可以与用于图像校正的自适应光学系统相关。
目的。太阳轨道器 (SolO) 于 2020 年 2 月 9 日发射,使我们能够研究内日球层湍流的性质。我们使用几乎不可压缩磁流体动力学 (NI MHD) 湍流模型和 SolO 测量研究了内日球层快速和慢速太阳风中各向异性湍流的演变。方法。我们计算了前向和后向传播模式下能量、波动磁能、波动动能、归一化残余能量和归一化交叉螺旋度的二维 (2D) 和平板方差,作为平均太阳风速度和平均磁场 (θ UB ) 之间角度的函数,以及作为日心距离的函数,使用 SolO 测量。我们比较了观测结果和 NI MHD 湍流模型的理论结果与日心距离的关系。结果。结果表明,前向和后向传播模式、磁场涨落和动能涨落的二维能量与平板能量之比随着平均太阳风流与平均磁场之间的夹角从 θ UB = 0 ◦ 增加到大约 θ UB = 90 ◦ 而增加,然后随着 θ UB → 180 ◦ 而减小。我们发现太阳风湍流是太阳中心距离函数中占主导地位的二维分量和少数平板分量的叠加。我们发现理论结果与观测结果在太阳中心距离函数中具有很好的一致性。