获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
本报告调查了使用数据驱动方法的使用,即现场倒置和机器学习(FIML),以改善常规的湍流模型,例如Spalart-Allmaras模型和Menter SST K-ω模型。使用有限的训练数据使用基于ML的方法来产生可推广到大量流量配置的校正的关键方面之一是设计适当的“功能”(输入ML模型)。基于FIML方法的指导的模型以分析形式介绍。在本报告的末尾列出了本研究中已经进行了实验的其他功能列表。尽管这些校正中没有使用这些,但它们被包括在当前工作中使用的完整过程。
主要关键词