摘要 - 对意外情况的自动实时识别在自动驾驶汽车的安全中起着至关重要的作用,尤其是在不支持且无法预测的情况下。本文评估了来自深度学习域的不同贝叶斯不确定性量化方法,以预测基于系统级模拟的测试期间对安全至关重要的不当行为进行预测。具体来说,我们计算不确定性得分作为车辆执行,此后直觉是高不确定性得分表明无支撑的运行时条件,这些条件可用于区分安全性诱导故障驾驶行为。在我们的研究中,我们对两种贝叶斯不确定性定量方法相关的有效性和计算开销进行了评估,即Mc-辍学和深层集合,以避免行为不当。对全部 对于来自udacity模拟器的三个基准,包括通过突变测试介绍的分布和不安全条件,两种方法都成功地检测到了大量的越野发作,可提前几秒钟提供几秒钟的早期警告,并提前几秒钟,超出了两个省级的错误态度错误的预测方法,并在效率上效率效率和注意力效应,并效率为效率效率,并效率为效率,并提前效率上的效率效应。 值得注意的是,深层合奏在没有任何错误警报的情况下检测到了大多数不当行为,即使使用相对较少的模型,也可以在计算上可行地进行实时检测。 我们的发现表明,将不确定性量化方法纳入是一种可行的方法,用于在基于深度神经网络的自动驾驶汽车中构建故障安全机制。对于来自udacity模拟器的三个基准,包括通过突变测试介绍的分布和不安全条件,两种方法都成功地检测到了大量的越野发作,可提前几秒钟提供几秒钟的早期警告,并提前几秒钟,超出了两个省级的错误态度错误的预测方法,并在效率上效率效率和注意力效应,并效率为效率效率,并效率为效率,并提前效率上的效率效应。 值得注意的是,深层合奏在没有任何错误警报的情况下检测到了大多数不当行为,即使使用相对较少的模型,也可以在计算上可行地进行实时检测。 我们的发现表明,将不确定性量化方法纳入是一种可行的方法,用于在基于深度神经网络的自动驾驶汽车中构建故障安全机制。对于来自udacity模拟器的三个基准,包括通过突变测试介绍的分布和不安全条件,两种方法都成功地检测到了大量的越野发作,可提前几秒钟提供几秒钟的早期警告,并提前几秒钟,超出了两个省级的错误态度错误的预测方法,并在效率上效率效率和注意力效应,并效率为效率效率,并效率为效率,并提前效率上的效率效应。 值得注意的是,深层合奏在没有任何错误警报的情况下检测到了大多数不当行为,即使使用相对较少的模型,也可以在计算上可行地进行实时检测。 我们的发现表明,将不确定性量化方法纳入是一种可行的方法,用于在基于深度神经网络的自动驾驶汽车中构建故障安全机制。对于来自udacity模拟器的三个基准,包括通过突变测试介绍的分布和不安全条件,两种方法都成功地检测到了大量的越野发作,可提前几秒钟提供几秒钟的早期警告,并提前几秒钟,超出了两个省级的错误态度错误的预测方法,并在效率上效率效率和注意力效应,并效率为效率效率,并效率为效率,并提前效率上的效率效应。值得注意的是,深层合奏在没有任何错误警报的情况下检测到了大多数不当行为,即使使用相对较少的模型,也可以在计算上可行地进行实时检测。我们的发现表明,将不确定性量化方法纳入是一种可行的方法,用于在基于深度神经网络的自动驾驶汽车中构建故障安全机制。
伪装的对象检测(COD)是识别在其环境中识别对象的任务,由于其广泛的实际应用范围很快。开发值得信赖的COD系统的关键步骤是对不确定性的估计和有效利用。在这项工作中,我们提出了一个人机协作框架,用于对伪装物体的存在进行分类,利用计算机视觉模型(CV)模型的互补优势和无创的脑部计算机界面(BCIS)。我们的方法引入了一个多视障碍,以估计简历模型预测中的不明显,利用这种不确定性在培训过程中提高效率,并通过基于RSVP的BCIS在测试过程中为人类评估提供了低信任案例,以实现更可靠的决策。我们在迷彩数据集中评估了框架,与现有方法相比,平衡准确性(BA)的平均平均提高为4.56%,F1得分的平均提高为4.56%。对于表现最佳的细节,BA的改善达到7.6%,F1分数为6.66%。对培训过程的分析表明,我们的信心措施和精度之间存在很强的相关性,而消融研究证实了拟议的培训政策和人机合作的有效性
上下文。来自经济和社会各个部门的基本服务依赖于复杂软件密集型系统的有效运行。这些系统范围从运行关键业务应用程序的复杂道路管理软件和公共云到制造业的网络物理系统。通常,它们用于现实世界中的应用程序中,其特征在于与环境变化,组件故障,测量不准确性和用户操作相关的高水平不确定性。为了在这种情况下提供其所需的功能,软件密集型系统需要通过自我适应来“驯服”这种不确定性。自我适应是一个过程,涉及使用封闭控制循环来监视系统及其环境,以进行相关更改,分析这些变化的影响,以计划适应更改的系统适应性,并执行(即实施)这些适应。使用此类Monitor-Analyse-Plan-Execute(或“ MAPE”)控制循环的软件密集型系统称为自适应系统(SAS)。
表观遗传年龄预测因子是Horvath的表观遗传钟1,这是一个统计预测模型,在353 CpG位点使用DNAM至1个预测年龄。2种训练表观遗传时钟的标准方法涉及几个关键步骤:(i)从具有不同背景的个体3个个体的生物样本中收集生物样本; (ii)提取DNA并进行DNA甲基化分析; (iii)进行数据预处理4个程序,例如缺少数据插补,离群值删除和数据归一化; (iv)采用特征筛选方法5来识别相关的CPG站点,这些位点可预测年龄或与衰老过程相关; (v)将高维6回归模型与弹性净罚款拟合; (vi)在独立的测试数据集上评估模型性能,以验证其7个准确性和鲁棒性。8尽管有完善的构造表观遗传时钟的管道,但其中大多数仅提供点平均预测1,2,5。9
摘要。深度神经网络已成为自动分割 3D 医学图像的黄金标准方法。然而,由于缺乏对提供的结果进行可理解的不确定性评估,临床医生仍然无法完全接受它们。大多数量化不确定性的方法,例如流行的蒙特卡罗 dropout,都限制了体素级预测的某种不确定性。除了与真正的医学不确定性没有明确的联系外,这在临床上也不令人满意,因为大多数感兴趣的对象(例如脑病变)都是由体素组组成的,而体素组的整体相关性可能不会简单地归结为它们各自不确定性的总和或平均值。在这项工作中,我们建议使用创新的图形神经网络方法超越体素评估,该方法由蒙特卡罗 dropout 模型的输出训练而成。该网络允许融合三个体素不确定性估计量:熵、方差和模型置信度;并且可以应用于任何病变,无论其形状或大小如何。我们证明了我们的方法在多发性硬化症病变分割任务中的不确定性估计的优越性。
摘要。量化深度学习模型预测中的不确定性有助于解释它们,从而有助于它们在关键领域的接受。然而,当前的标准方法依赖于多步骤方法,这增加了推理时间和内存成本。在临床常规中,自动预测必须融入临床咨询时间范围,这就需要更快、更有效的不确定性量化方法。在这项工作中,我们提出了一种名为 BEHT 的新模型,并在多发性硬化症 (MS) 患者 T2 加权 FLAIR MRI 序列白质高信号的自动分割任务中对其进行了评估。我们证明,这种方法输出预测不确定性的速度比最先进的蒙特卡洛 Dropout 方法快得多,而且准确度相似,甚至略高。有趣的是,我们的方法区分了两种不同的不确定性来源,即随机不确定性和认知不确定性。
本文为基于可靠的状态空间可达性分析提供了一种安全自主导航的新方法。后者改善了基于顺序航路点(NSBSWR)框架[1]的已经提出的灵活导航策略[1],同时考虑了建模和/或感知方面的明显不同的不确定性。的确,NSBSWR是一个新兴的概念,可以利用其灵活性和通用性,以避免频繁的复杂轨迹的计划/重新计划。本文的主要贡献是引入可及性分析方案,作为可靠的风险评估和管理政策,以确保连续分配的航点之间安全自主导航。为此,使用间隔分析来传播影响车辆动力学到导航系统指出的不确定性。通过求解具有不确定变量和参数的普通微分方程,通过间隔泰勒串联扩展方法揭示了所有车辆潜在的可触及状态空间。根据可达集的获得的界限,对导航安全做出了决定。一旦捕获了碰撞风险,风险管理层就会采取行动以更新控制参数,以掌握关键情况并确保适当地达到Waypint,同时避免任何风险状态。几个模拟结果证明了在不确定性下总体导航的安全性,效率和鲁棒性。
目前还没有统一的框架来访问这种不确定的、丰富的异构数据集合,因此研究人员不得不依赖临时工具。特别是,当前试图解决这一任务的工具的一个主要弱点是只开发了非常有限的命题查询语言。在本文中,我们介绍了 NeuroLang,这是一种基于一阶逻辑的概率语言,具有存在性规则、概率不确定性、开放世界假设下的本体集成以及内置机制,可保证对非常大的数据集进行可处理的查询回答。NeuroLang 的主要目标是提供一个统一的框架,无缝集成异构数据(如本体),并通过一组正式标准将细粒度认知领域映射到大脑区域,促进可共享和高度可重复的研究。在介绍该语言及其通用查询回答架构之后,我们讨论了现实世界的用例,展示了 NeuroLang 如何应用于实际场景。
了解经济不确定性冲击在工业分类水平上的影响对于财政和货币政策对经济不确定性冲击的反应至关重要。我们使用澳大利亚季度数据从1987年:2到2018:4估算了SVAR模型:4。本文的结果强调,各个行业对经济不确定性冲击具有独特的反应,并不一定反映了更广泛的总体宏观经济的反应。我们找到了以下风格化的事实; i)在澳大利亚的投资,产出和就业方面,建筑业是经济不确定性冲击受到经济不确定性冲击的影响最大的行业; ii)金融和保险服务行业还经历了这些冲击的大幅下降,尤其是投资和就业指标; iii)证明经济不确定性对政府发挥重要作用的采矿,医疗保健和社会援助以及公共管理和安全行业的影响较小。
虽然许多研究已经强调了 100% 可再生电力系统的可行性(Brown 等人,2018 年,以及其中的参考文献),但这种系统的成本仍存在很大争议。继 Joskow(2011 年)、Hirth(2015 年)和 Hirth 等人(2016 年)之后,许多文章都关注可再生能源在电力结构中的最佳比例。这些文献强调了与部署可变可再生能源相关的系统整合成本的存在。特别是,强调了一种“自我蚕食”现象,与特定位置的所有太阳能电池板或风力涡轮机同时发电有关。在缺乏经济实惠的存储的情况下,这些整合成本有两个后果:(i)部署可再生能源会导致大量额外成本,并且随着部署率的提高而迅速增加;(ii)必须在不同的生产技术之间取得适当的平衡,以尽量减少这种额外成本。
