“Rapid Degradation of Undruggable Proteins via the Lipid Nanoparticle-Mediated Intracellular Delivery of Recombinant bioPROTACs” Andrew Tsourkas, PhD , Professor of Bioengineering, School of Engineering and Applied Science, co-Director, Center for Targeted Therapeutics and Translational Nanomedicine, University of Pennsylvania
摘要 靶向药物的发现很大程度上依赖于靶蛋白的三维结构,当未知蛋白质靶点的三维结构时,设计其对应的靶向药物非常困难。某些蛋白质(即所谓的不可成药靶点)尽管三维结构已知,但却缺乏针对它们的药物。随着蛋白质数据库中存储的晶体/低温电子显微镜结构越来越多,发现靶向药物的可能性大大增加。此外,通过识别先前不可成药的靶点的隐藏变构位点,也很有可能将之前的不可成药靶点转变为可成药靶点。本文主要介绍目前可用的针对未知三维结构的蛋白质发现新化合物的先进方法,以及如何将不可成药的靶点转变为可成药的靶点。
CONSPECTUS:现代药物发现工作中最大的瓶颈之一是解决不可用药的蛋白质组。目前,超过 85% 的蛋白质组仍然被认为是不可用药的,因为大多数蛋白质缺乏明确的结合位点,而这些位点无法用小分子进行功能性靶向。解决不可用药的蛋白质组需要创新方法来发现针对不可用药蛋白质的配体,以及开发新的治疗方法来功能性地操纵感兴趣的蛋白质。化学蛋白质组学平台,特别是基于活性的蛋白质分析 (ABPP),已经出现,通过使用基于反应性的化学探针和先进的基于定量质谱的蛋白质组学方法来发现“可配体热点”或可以用小分子配体靶向的蛋白质组范围的位点,以解决不可用药的蛋白质组问题。随后,这些位点可通过共价配体进行药理靶向,以快速发现针对目标治疗性蛋白质的功能性或非功能性结合剂。化学蛋白质组学方法还揭示了对配体能力的独特见解,例如发现独特的变构位点或蛋白质的内在无序区域,这些区域可通过药理学和选择性靶向,以实现生物调节和治疗益处。化学蛋白质组学平台还通过发现几种新的共价 E3 连接酶募集剂,扩大了针对靶向蛋白质降解和蛋白水解靶向嵌合体 (PROTAC) 的新兴治疗模式的范围。展望未来,化学蛋白质组学方法无疑将对进一步扩展现有研究产生重大影响,包括蛋白质组范围的配体可定位性、针对高价值非药物治疗靶点的靶向配体发现、进一步扩大靶向蛋白质降解平台的范围、发现能够独特调节蛋白质功能的新分子胶支架,以及最令人兴奋的是开发下一代小分子诱导邻近治疗模式,这些模式超越了降解。随着化学生物学成为药物发现越来越重要的驱动力,该领域将迎来激动人心的一天,化学蛋白质组学方法必将成为开发下一代疗法的支柱。■ 主要参考文献
靶向致病蛋白的治疗方式是多种疾病适应症的金标准。不幸的是,这些蛋白质中的很大一部分被标准的基于小分子的方法“不可能”,这在很大程度上是由于它们的无序性质和不稳定性。将功能性肽设计为不可用的靶标,无论是独立的粘合剂还是效应域的融合,因此为治疗干预提供了独特的机会。在这项工作中,我们将最新模型适应对比的语言图像预训练(剪辑),以设计一个统一的,基于序列的框架来设计目标特异性肽。此外,通过利用已知的实验结合蛋白作为支架,我们创建了一个流线型的推断管道,称为切割和夹子,有效地选择了肽进行下游筛选。最后,我们在实验中融合了候选肽与E3泛素连接酶结构域,并在人类细胞中证明了致病蛋白靶标的稳健细胞内降解,从而激发了我们技术的进一步发展,以促进未来的临床翻译。
• RMC-6236 有效抑制 RAS(ON) 的所有亚型,包括致癌 KRAS、NRAS 和 HRAS 突变体以及野生型 RAS • 使用 (环丝氨酸蛋白酶 A)-RAS 胶合机制是这种广泛 RAS 信号阻断的基础 • 临床前研究显示,RMC-6236 在 842 种 RAS 驱动的细胞系中表现出广谱活性,这转化为 NSCLC、CRC 和 PDAC 的多种异种移植模型中的消退 • 初步临床数据显示,由先前“无法用药”的 RAS 突变驱动的肿瘤出现显著消退
癌症将直接影响超过三分之一人口的生活。DNA 损伤反应 (DDR) 是一个复杂的系统,涉及损伤识别、细胞周期调控、DNA 修复以及最终的细胞命运决定,在癌症病因和治疗中发挥着核心作用。涉及 DDR 靶向的两种主要治疗方法包括:采用抗癌基因毒性剂的组合治疗;以及合成致死,利用偶发性 DDR 缺陷作为癌症特异性治疗的机制。尽管许多 DDR 蛋白已被证明“无法用药”,但基于片段和结构的药物发现 (FBDD、SBDD) 已推进治疗剂的识别和开发。FBDD 已导致 4 种药物(约 50 种药物处于临床前和临床开发阶段),而 SBDD 估计已为 200 多种 FDA 批准药物的开发做出了贡献。基于蛋白质 X 射线晶体学的片段库筛选,尤其是针对难以捉摸或“无法用药”的靶标,可以同时生成命中结果以及蛋白质-配体相互作用和结合位点(正构或变构)的详细信息,从而为化学可处理性、下游生物学和知识产权提供信息。使用一种新颖的高通量基于晶体学的片段库筛选平台,我们筛选了五种不同的蛋白质,命中率约为 2-8%,晶体结构约为 1.8 至 3.2 Å。我们考虑了当前的 FBDD/SBDD 方法以及设计工作的一些典型结果
可编程 mRNA 疗法领域也即将出现,Omega 的 Epigenomic Controller OTX-2002 可降低致癌基因 c-Myc 的表达,c-Myc 是历史上“无药可治”的靶点,也是 50% 以上人类癌症中癌症增殖和免疫逃避的关键驱动因素。总体而言,基于 mRNA 的癌症免疫疗法的临床前和临床研究正在迅速发展,以加强癌症患者的护理。然而,未来的重点是充分利用先进的治疗方式,包括优化新抗原特异性癌症疫苗、了解癌症免疫逃避的生物学以及平衡抗癌免疫反应。19
