在 COVID-19 大流行一年后,2020 年 12 月的荟萃分析并不支持其再感染。现在很明显,不仅早期接触后的再感染是现实,而且接种疫苗后的突破性感染的报告也越来越多。突破性感染意味着感染突破了疫苗提供的保护。疾病的进程、严格的预防措施观察以及安全的疫苗是长期解决方案的必要条件。疫苗的有效性、免疫的持久性、病毒变体的作用、突破性感染的发生率和严重程度是现实生活中的挑战。突破性感染是指接种疫苗后≥14 天在呼吸道标本中检测到 SARS-CoV-2 RNA 或抗原。文献中报道的突破性感染率为 0.04% 至 13%。尼泊尔于 2021 年 1 月底开始推广疫苗。近 300 万人口接种了两种疫苗,即 Covishield(印度阿斯利康)和 Vero Cell(中国国药集团)。首次疫苗推广后,仅报告了轻微的“免疫后不良事件”。当地人口中缺乏关于这些疫苗突破性感染的报告。尼泊尔疫苗推广中突破性感染的数据正在等待分析。关键词:突破性感染、COVID-19 疫苗、尼泊尔、SARS-CoV-2 变体、第二波
药物再利用筛选显示 FDA 批准的抗 SARS-Cov-2 药物 Mark Dittmar 1,6、Jae Seung Lee 1,6、Kanupriya Whig 2,6、Elisha Segrist 1、Minghua Li 1、Kellie Jurado 3、Kirandeep Samby 4、Holly Ramage 3,5,7、David Schultz 2,7 和 Sara Cherry 1,2,3,7,8 1 宾夕法尼亚大学病理学和实验室医学系 2 宾夕法尼亚大学生物化学和生物物理系 3 宾夕法尼亚大学微生物学系 4 疟疾药物研发基金会 5 托马斯·杰斐逊大学微生物学系 6 这些作者贡献相同 7 通讯作者:HR、DS 或 SC 8 主要联系人:SC 摘要:迫切需要抗病毒药物来治疗新出现的 SARS-CoV-2。为了确定新的候选药物,我们筛选了一个约 3,000 种药物的再利用库。在 Vero 细胞中筛选发现的抗病毒药物很少,而在人类 Huh7.5 细胞中筛选验证了 23 种不同的抗病毒药物。将我们的研究扩展到肺上皮细胞,我们发现 SARS-CoV-2 在这些细胞中使用的药物敏感性和进入途径存在重大差异。进入肺上皮 Calu- 3 细胞与 pH 无关,需要 TMPRSS2,而进入 Vero 和 Huh7.5 细胞需要低 pH 值并由酸依赖性内体蛋白酶触发。此外,我们发现 9 种药物在肺细胞中具有抗病毒作用,其中 7 种已在人体中测试过,3 种已获得 FDA 批准,包括环孢菌素,我们发现它的抗病毒活性靶点是环丝氨酸而不是钙调磷酸酶。这些抗病毒药物揭示了重要的宿主靶点,并有可能快速在临床上实施。简介冠状病毒代表一大类与医学相关的病毒,历史上与普通感冒有关。然而,近年来,冠状病毒家族的成员已从动物宿主进入人类并引起了新的疾病 (1)。首先,严重急性呼吸道综合征 (SARS-CoV) 于 2003 年在中国出现,随后是 2012 年的中东呼吸综合征 (MERS-CoV) (2, 3)。虽然 SARS 最终被根除,但 MERS 继续在中东引起感染。从 2019 年 12 月开始一直持续到 2020 年 1 月,一种新的呼吸道病毒正在中国武汉传播。快速测序工作揭示了一种与 SARS 密切相关的冠状病毒,被命名为 SARS-CoV-2 (4)。不幸的是,这种病毒传染性极强,已在世界各地迅速传播。鉴定广谱 SARS-CoV-2 抗病毒药物对于临床治疗 SARS-CoV-2 感染至关重要。寻找候选抗病毒药物的一个潜在途径是部署对相关病毒有活性的药物。先前的研究发现,针对埃博拉病毒 RNA 依赖性 RNA 聚合酶开发的抗病毒药物瑞德西韦在体外也对 SARS-CoV-2 有活性,临床试验结果令人鼓舞 (5-7)。氯喹、及其衍生物(包括羟氯喹)被批准用于治疗疟疾,许多体外研究发现这些药物对冠状病毒(包括 SARS-CoV-2)也有效(8, 9)。这导致早期采用这些药物治疗 COVID-19(
该药物受到其他监测。这将允许快速识别新的安全信息。卫生专业人员被要求通知任何不良反应的怀疑。要知道如何通知不良反应,请参见第4.8节。1。药物的名称Qdenga粉末和溶剂的可注射溶液Qdenga粉末和溶剂的溶剂和溶剂的可注射溶液用于四龙龙的前弹药注射器(活着,衰减)2。重建后的定性和定量组成,1剂(0.5 mL)包含:血清型登革热病毒1(活着,减毒)*:≥3.3log10 log10 ufp **/剂量登革热登革热病毒2(活着,衰减)#:≥2.7log10 log10 log11 ufp ** uf ** uf **/dose Enteripe 3(活着) UFP **/血清型4的剂量登革热病毒(活着,减弱)*:≥4.5log10 ufp **/剂量*通过重组DN技术在细胞中产生的细胞中产生。表面蛋白基因特有的,特定于协同血清型,以整合登革热2型的主要结构。该药物含有转基因的生物(GMO)。#通过重组DNA技术在细胞中进行了#prover ** ufp =板训练单元完整的赋形剂列表,请参阅第6.1节。3。用于注射溶液的药物形式粉末和溶剂。重建之前,将疫苗作为白色至白色的冻干蛋糕出现。溶剂是一种清晰,无色的解决方案。4。使用Qdenga必须遵守官方建议。临床信息4.1治疗指示QDenga用于预防4岁或以上个体的登革热疾病。4.2在两个剂量制度(0和3个月)中,应以4年或4年的4年或4年的剂量为0.5 ml的posology和4年个体。尚未确定对加固剂量的需求。
具有12个分割的双链RNA基因组的Colorado Tick热病毒(CTFV)是一种致病性arbovirus,可引起人类严重疾病。然而,在分析复制机制和致病性的分析中几乎没有取得进展。这种病毒学约束是由于缺乏CTFV的反向遗传学系统。因此,我们旨在建立系统。最初,在各种细胞系中研究了CTFV复制的功效。CTFV在许多来自不同宿主和器官的细胞类型中生长。随后,用编码编码12个CTFV基因段中每个链的质粒,编码所有CTFV蛋白的表达质粒和vercinia vercinia病毒RNA-RNA粘贴酶转染了稳定表达T7 RNA聚酶的BHK-T7细胞。转染后,将细胞与Vero或HeLa细胞共培养。使用该系统,我们营救了带有肽标记的病毒蛋白的单种植体和重组病毒。此外,还建立了使用表达T7 RNA聚合酶的Expi293F细胞的改进系统,从而使重组报告基因CTFV的产生。总而言之,这些用于CTFV的反向遗传学系统将极大地归因于了解病毒复制机制,发病机理和传染性,最终促进了有理处理和候选疫苗的发展。
ARS-COV-2是冠状病毒疾病2019(COVID-19)大流行的病因学药。SARS-COV-2是在2002 - 2003年SARS-COV-1之后的第21世纪越过物种障碍的第三个高度致病性冠状病毒(参考文献。1 - 3)和2012年的MERS-COV(参考4)。已知另外四个HCOV(HCOV-229E,HCOV-NL63,HCOV-OC43和HCOV-HKU1)在人类的季节性循环中循环,大约有三分之一的常见冷感染感染5。像SARS-COV-1和HCOV-NL63一样,SARS-COV-2进入靶细胞的进入是由血管紧张素转化酶2(ACE2)受体6-10介导的。SARS-COV-1和SARS-COV-2使用细胞丝氨酸蛋白酶跨膜蛋白酶丝氨酸2(TMPRSS2)用于质膜6,11的尖峰蛋白启动。组织蛋白酶还参与SARS-COV峰蛋白裂解和融合肽暴露于进入时(参考文献。12 - 15)。已经报道了几个用于鉴定冠状病毒调节剂的全基因组KO CRISPR屏幕16 - 21。这些屏幕使用肾脏起源的自然允许的Simian Vero E6细胞20;肝脏起源的人类HuH7细胞(或衍生物)(非定位表达ACE2和TMPRSS2)16、18、19;和A549肺部的细胞,异位表达ACE2 17,21。在这里,我们进行了全基因组,功能丧失的CRISPR KO屏幕和功能获得的CRISPRA屏幕,包括生理学上
苯依咪唑是嘌呤核苷的同源性。它被广泛用作不同抗癌药的发展中的基本核。受体酪氨酸激酶(RTK)的过表达高。因此,它们被认为是癌症治疗中的重要靶标。然而,由于增加了发现新的抗癌疗法的需求,因此已经确定了许多耐药性的分子机制。在这项研究中,设计并实际上对两种癌细胞系(乳腺癌和肺癌)的细胞毒性活性进行了合成,表征并研究了一组2-(氨基甲基)苯咪唑衍生物,并实际上对其进行了脱水,对其进行了特征和研究,并使用gefitinib作为gefitinib作为参考标准。大多数合成化合物在T47D细胞系中都是活性的,而4G和2G化合物都比Gefitinib具有更高的细胞毒性,而A549细胞系也显示出对所有化合物甚至Gefitinib的高抗性。更有趣的是,所有合成化合物对正常细胞均无活性。合成化合物的对接得分结果与其细胞毒性活性兼容,该证据很好地解释了它们可以充当受体酪氨酸激酶抑制剂(RTKIS)。对高度细胞毒性化合物的ADME研究具有良好的药物相似性和药代动力学结果。
由严重急性呼吸综合征冠状病毒 2 (SARS- CoV-2) 引起的 2019 冠状病毒病 (COVID-19) 大流行是一场全球危机。迫切需要具有高效性、易获得性且不会产生耐药性的临床候选药物。尽管对已临床批准药物的重新利用进行了筛选,提供了多种被证明在细胞培养中对抗 SARS-CoV-2 感染的有效药物,但很少有被证实的体内抗病毒候选药物。在本研究中,从 2,580 种 FDA 批准的小分子药物中鉴定出 94 种在 Vero E6 细胞中对 SARS-CoV-2 显示高抗病毒活性的化合物。其中,筛选出了 24 种低细胞毒性的化合物,其中 17 种化合物还有效抑制了转导人 ACE2 的 HeLa 细胞中的 SARS-CoV-2 感染。六种化合物扰乱了 SARS-CoV-2 生命周期的多个过程。使用感染 SARS-CoV-2 的叙利亚仓鼠体内测定了它们的预防效果。七种化合物减少了感染原始毒株和 D614G 变体的仓鼠的体重减轻并促进了体重恢复。除顺式阿曲库铵外,六种化合物在感染后 4 天测定时降低了仓鼠肺部病毒载量以及 IL-6 和 TNF-α mRNA。特别是,舍曲林、盐霉素和吉利替尼在体内表现出与瑞德西韦相似的保护作用,并且在体外 SARS-CoV-2 连续传代 10 次后未诱导抗病毒药物耐药性,表明其有望用于 COVID-19 治疗。
摘要 机器人和人工智能领域的技术革命似乎预示着我们以人为本的社会范式未来将发生转变,即在我们的日常环境中更多地纳入人工智能认知代理。理解人工智能代理不仅仅是解释特定的算法,还需要分析代理之间以及与周围环境的相互作用。因此,人工智能与行为科学的结合看到了其真正的潜力,作为改善人们生活的一种道德方式,最终用户在共享个人数据以获得透明和相关的服务时可以感到安全。机器人和人工智能领域的技术革命预示着我们以人为本的社会范式未来将发生转变,即在我们的日常环境中更多地纳入人工智能认知代理。理解它们超出了对特定算法的解释,还需要分析代理之间以及与周围环境的相互作用。因此,我们必须看到人工智能与行为科学结合的真正潜力,即以合乎道德的方式改善人们的生活,让人们在共享个人数据以获得透明和相关的服务时感到安全。
如报告中所述,4000 个病毒体/小时的假设是基于对其他人类冠状病毒的呼出气研究 [1],以及根据对病房中 SARS-CoV-2 气溶胶的研究得出的理想化估计值 [2,3]。虽然考虑到 Leung 等人的研究背景,这个数字是合理的,但它并不意味着代表可能的源项范围。例如,Jianxin 等人 [4] 报告估计感染者在呼出气中每小时产生 1.03 × 10 5 至 2.25 × 10 7 个病毒。然而,在更仔细地研究这个范围时,很明显这些估计值是从所研究的 52 名个体中的 14 名得出的,其他个体的呼出气中没有可检测到的病毒。还需要注意的是,所有呼出气中病毒的估计值都是基于从 rRT-PCR 得到的病毒 RNA 拷贝数,而不是传染性病毒。虽然从表面上看,使用 RNA 拷贝数据来估计传染性病毒的浓度似乎是合理的,但两者之间的关系可能更为复杂。例如,La Scola 等人 [5] 无法从 SARS-CoV-2 E 基因 Ct 大于 34 的鼻咽样本中分离出传染性病毒。Fabian 等人 [6] 将 RT-PCR 结果与组织培养进行比较时发现,实验室流感病毒库存的 RNA 拷贝数与传染性病毒之比为 300。在 Vero E6 细胞中生长的 SARS-CoV-2 也显示每 pfu 有许多 RNA 拷贝(Santarpia 未发表的数据)。因此,目前无法根据病毒 RNA 拷贝数确定感染风险。
如报告中所述,4000 个病毒体/小时的假设是基于对其他人类冠状病毒的呼出气研究 [1],以及从对病房中 SARS-CoV-2 气溶胶的研究得出的理想化估计值 [2,3]。虽然考虑到 Leung 等人的背景,这个数字是合理的,但它并不意味着代表可能的源术语范围。例如,Jianxin 等人。[4] 报告估计感染者呼出的气体中产生的病毒量为 1.03 × 10 5 至 2.25 × 10 7 个病毒/小时。然而,在更仔细地检查该范围时,很明显这些估计值来自所研究的 52 个人中的 14 个人,而其他人的呼出气体中没有可检测到的病毒。还必须注意的是,所有对呼出气中病毒的估计都是基于从 rRT-PCR 获得的病毒 RNA 拷贝数,而不是传染性病毒。虽然从表面上看,使用 RNA 拷贝数据估计传染性病毒的浓度似乎是合理的,但这种关系可能更复杂。例如,La Scola 等人。[5] 无法从 SARS-CoV-2 E 基因 Ct 大于 34 的鼻咽样本中分离出传染性病毒。。Fabian 等人。[6] 发现,将 RT-PCR 结果与组织培养进行比较时,实验室流感病毒库存的 RNA 拷贝与传染性病毒的比率为 300。在 Vero E6 细胞中生长的 SARS-CoV-2 也显示每 pfu 有许多 RNA 拷贝(Santarpia 未发表的数据)。因此,目前无法根据病毒 RNA 拷贝数确定感染风险。