FRF(频率响应函数)提供了激励和响应之间的传递函数,它可以用来定位能量传递路径,或结构的一些重要动态特性
满足测试工程师的需求:便利性、性能、灵活性和安全性 LASER USB 是测试实验室的理想控制器,因为它集便利性、性能、灵活性和安全性于一体。它提供 24 位精度、宽控制动态范围和快速循环时间,为您最具挑战性的测试提供卓越的控制。LASER USB 也是满足您测试需求的高度灵活的解决方案,具有全功能控制和分析软件应用程序,可用于随机、扫频正弦、共振驻留、经典冲击、随机对随机、正弦对随机、冲击 SRS 和现场数据复制。峰度控制和疲劳监测等先进技术可缩短测试时间并提高产品的可靠性。一键式报告功能可快速轻松地为您的设计团队或客户创建全面的报告,特殊的活动报告允许您重新缩放、缩放或光标移动 Microsoft ® Word ® 报告文档中的任何数据图。
吱吱声和嘎嘎声 我们的静音电动振动器支持行业标准的吱吱声和嘎嘎声振动测试 QA 实践,确保汽车零部件和内饰经久耐用且无噪音,从而提高乘客舒适度。随着混合动力汽车和电动汽车越来越普遍,电池耐久性测试是下一代交通工具的关键。我们开发了一种定制振动测试系统,用于混合电池测试以及多节计算机管理电池的高加速寿命测试 (HALT)。
本文研究并比较了飞机的被动和主动起落架系统以及飞机滑行时由于跑道不平整引起的动态响应。跑道不平整引起的动态载荷和振动会导致机身疲劳、乘客不适并降低飞行员控制飞机的能力。本文的目标之一是获得全飞机模型的被动和主动起落架的数学模型。本文的主要目的是为主动起落架系统设计线性二次调节器 (LQR),该系统选择悬架系统的阻尼和刚度性能作为控制对象。有时,由于主动控制系统中的非线性执行器导致过程动态变化、环境条件变化和扰动特征变化,传统的反馈控制器可能无法很好地发挥作用。为了克服上述问题,我们设计了一个基于线性二次调节器的二阶系统控制器。通过数值模拟将主动系统的性能与被动起落架系统进行了比较。本论文的结果与参考文献中提到的先前工作相比,表明机身加速度提高了 37.04%,机身位移提高了 20%,减震支柱行程提高了 13.8%。主动起落架系统能够通过减少
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
本文以 AIRBUS A350XWB MSN1 的地面振动测试为背景,该测试在首飞前不久进行。该测试由来自德国航空航天中心和法国国家航空航天研究所 (DLR-ONERA) 的跨国 GVT 团队在法国图卢兹的 AIRBUS 设施内进行,仅用了 9 个测量日。在测试期间,使用了 LMS Scadas III 数据采集系统,采集单元采用分布式架构,通过 300 米光纤电缆连接,以最大限度地缩短传感器电缆长度。总共记录了 530 个加速度信号、27 个力信号和 33 个其他信号。该结构通过 13 个电动振动器从 23 个位置受到激励,主要使用优化的扫频正弦信号,偶尔使用随机信号,获得超过 180 次激励运行。为了了解更多信息,还对一些特定模式应用了相位共振法 (PRM)。
主动振动控制应用中使用的执行器可以通过利用面板结构中的弯曲或剪切应变或直接线性驱动来产生应变。面板减振应用包括抑制直升机和螺旋桨飞机机身、飞机机翼、变压器外壳和管道中的机身振动。结构构件应用包括桁架式结构中的减振、主动悬架和机翼中的主动颤振抑制。除了这些应用之外,精密主动构件还可用于结构形状修改。虽然产生剪切的执行器在减少面板和其他低负载应用中的振动方面非常有效,但大多数负载应用都是使用主动构件型组件进行的。此外,为了使这些系统性能良好,这些执行器需要在宽频带宽内运行。