当发动机组件受到振动环境的影响时。之所以选择振动环境进行本研究,是因为它是与之相关的不确定性最大的负载,并且为了实现令人满意的设计,已经投入了大量的开发资金和时间。从纯粹的设计角度来看,并且取决于药柱设计和任务要求,热、加压和加速度可能比振动环境更重要。温度规格及其对发动机性能和成本的影响已经进行了研究,^* 并且其他负载不具有与振动环境相关的不确定性。
主动振动控制应用中使用的执行器可以通过利用面板结构中的弯曲或剪切应变或直接线性驱动来产生应变。面板减振应用包括抑制直升机和螺旋桨飞机机身、飞机机翼、变压器外壳和管道中的机身振动。结构构件应用包括桁架式结构中的减振、主动悬架和机翼中的主动颤振抑制。除了这些应用之外,精密主动构件还可用于结构形状修改。虽然产生剪切的执行器在减少面板和其他低负载应用中的振动方面非常有效,但大多数负载应用都是使用主动构件型组件进行的。此外,为了使这些系统性能良好,这些执行器需要在宽频带宽内运行。
每种载荷条件的响应时间历史。在时间域中,使用雨流循环计数技术(Matsuishi 和 Endo 1968)直接计算应力的时间历史。然后使用 Palmgren-Miner(Palmgren 1924,Miner 1945)损伤累积定律对每个循环的损伤进行线性求和。时间域方法适用于任何类型的信号,无论是随机信号还是确定性信号。然而,这种方法对于随机载荷而言计算量很大,因为需要较长的应力时间历史才能以统计准确的方式生成应力范围直方图的尾部。极端情况实现不佳可能会对疲劳寿命估计产生不利影响,因为最具破坏性的事件可归因于尾部的高应力范围。因此,损伤估计的收敛性会随着
摘要。飞机起落架(ALG)的失效主要是由于振动疲劳引起的。其主要失效模式为疲劳断裂。目前,ALG的可靠性计算通常采用基于二元状态假设的应力强度干涉(SSI)模型。而实际情况是,强度随时间的推移而退化,失效与成功的界限模糊,二元状态假设与事实不符。针对这一问题,本文采用隶属函数(MF)表示振动疲劳失效模式下强度退化引起的模糊安全状态。此外,提出了一种基于模糊失效域(FFD)的ALG模糊可靠性模型(FRM)。最后,通过仿真算例验证了方法的可行性。通过将FRM的仿真结果(SR)与静态SSI模型和动态SSI模型的SR进行比较,验证了该方法的合理性。FRM可以在不考虑逐渐退化过程的情况下计算可靠性,因此应用更为广泛。
l天是ISO 1996-2中定义的A加权长期平均声音水平,在一年中的所有一天中确定。12小时的白天期间为07:00至19:00小时。l晚上是ISO 1996-2中定义的A加权长期的平均声音水平,在一年的所有晚上确定。4小时的傍晚时期在19:00至23:00小时之间。l Night是ISO 1996-2定义的A加权长期平均声音水平,在一年的所有夜晚确定。8小时的夜间时间在23:00至07:00小时之间。2.6调查程序噪声测量是根据ISO 1996中包含的指南进行的:声学 - 描述测量和评估以及环境噪声。第1部分:基本数量和评估程序(2016年)和第2部分:确定声压水平(2017)。
摘要 —本文基于 MEMS 技术设计并制作了带穿孔电极的驻极体振动能量收集器。装置中的固定电极上分布有通孔,以优化能量收集过程。在有限元法 (FEM) 模拟和实验中分析并讨论了孔对装置输出功率的影响。可以看出,通孔可以有效降低大气中可移动质量块上的挤压膜空气阻尼力。因此,可以减少由于空气阻尼造成的能量损失,并增加装置的输出功率。还详细研究了孔直径和数量对装置输出功率的影响。通过优化孔的配置,孔直径为 400 µ m、深度为 100 µ m 的穿孔装置在 1.84 m/s 2 的低加速度下表现出最高的功率输出,这证明了未来在自供电电子产品中的良好应用。 [2020-0380]
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
当发动机组件受到振动环境的影响时。之所以选择振动环境进行本研究,是因为它是与之相关的不确定性最大的负载,并且为了实现令人满意的设计,已经投入了大量的开发资金和时间。从纯粹的设计角度来看,并且取决于药柱设计和任务要求,热、加压和加速度可能比振动环境更重要。温度规格及其对发动机性能和成本的影响已经进行了研究,^* 并且其他负载不具有与振动环境相关的不确定性。
能够对系统的结构性能和可靠性进行评估。与叶片振动监测相关的主要技术挑战之一源于复杂的动力学和内在的不确定性,这使得基于模拟的方法难以实现。因此,振动特性的数值研究应基于可靠且有效的气动弹性模型,该模型应能够将结构和气动部分耦合在一起。前者通常用等效梁单元建模,而 WT 的典型气动建模方法包括叶片单元动量 (BEM) 理论、执行器线模型、升力板和涡流模型以及计算流体动力学 (CFD) 方法。执行器线 6 以及升力板和涡流模型 7 旨在提供改进的尾流建模;然而,它们都各有弱点,前者由于需要求解 Navier-Stokes 方程而计算量大,而后者由于方法的内在奇异性而存在发散问题。8 另一方面,CFD 分析受到了广泛关注,尽管目前显示它对于大攻角不可靠。9 此外,它们的适用性仍然受到计算需求增加的限制。10 因此,BEM 理论已成为预测 WT 叶片上气动载荷的标准工业实践,这归功于它能够使用翼型气动数据提供准确且计算效率高的结果。除了上述成熟的气动模型外,还提出了各种替代方法。Zhang 和 Huang 10 对此进行了广泛的综述研究,重点关注不稳定性问题、复杂的流入效应、结构非线性以及 CFD 和气动水弹性分析。仅就气动部分而言,Lee 等人提出了使用改进的条带理论进行气动弹性分析。11 同时还提出了一种基于谐波平衡法的气动弹性方案,12 显著缩短了计算时间,并且比标准 BEM 方法更为稳健。通过使用三维模型进行数值研究,进一步研究了冰积对叶片气动行为的影响。 13最后,Peeters 等人。39 最后,一类更复杂的方法涉及基于 CFD 的分析,9,14 事实证明,这些方法与标准工业工具(例如疲劳、空气动力学、结构和湍流 (FAST))具有合理的一致性。关于结构模型,还提出了超出标准方法(包括等效梁的构造)15 的方法,包括薄壁梁模型 16 ,它可以适应大型叶片中遇到的大多数特征,例如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损坏的模型,17 等等。18 对叶片的壳和固体有限元 (FE) 模型之间的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在大量可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型柔性叶片则并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性而产生的耦合效应变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商业模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决 WT 叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 本质上提供了变形梁几何的精确表示,这对于较大的 WT 来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。该方法被证明具有显著的计算效率,从而能够与结构监测数据相结合以供实时应用。31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法可以减轻计算成本的增加,即使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。
EADS CASA 的军用运输飞机部门 (MTAD) 在先进航空结构的设计和制造方面拥有丰富的经验。这包括碳纤维和金属结构,以及自动化流程(制造和组装)方面的经验。目前,该公司为一系列航空项目开发或生产飞机结构:水平稳定器(A400M、Falcon 7X)、飞行控制面(B-777、B-737、Falcon 7X、A400M、欧洲战斗机)、发动机短舱、纤维铺放技术风扇罩(A340-500/600、A380、A318)、金属结构(A380 机腹整流罩、A318 风扇罩、A320 第 18 部分、A330/340 中央箱等)、前缘(空客)等。MTAD 正在生产旨在满足世界各国空军对加油机/运输机不同需求的解决方案。MTAD 已经认识到广泛的任务需求,并基于两个空客平台提供定制解决方案:久经考验的 A310-300 和 A330-200。MTAD 有能力设计、制造、认证和销售整机。它拥有成功的轻型和中型军用运输机系列,如 C-212(销售超过 400 架)、CN-235(销售超过 300 架)和 C-295(销售超过 60 架)。这些产品是对 EADS 其他产品组合的补充,这也是在塞维利亚的 EADS CASA 工厂建立重型军用运输机 A400M 总装线的原因。鉴于其在 A330 MRTT 和 A400M 认证过程中的飞机结构测试责任,MTAD 与 Alava Ingenieros 和 LMS International 合作,更新了用于地面振动测试 (GVT) 的测量硬件和软件。新系统已部署,测试团队接受了 EADS CASA 的 A310 吊杆演示飞机上演示 GVT 的培训。除了本次测试的结果外,我们还展示了 A330 MRTT 认证测试的其他结果。EADS CASA 的 A310 吊杆演示飞机于 2007 年 1 月 30 日完成了第 12 次试飞,吊杆首次成功展开(图 1a)。2006年3月30日,经过3年的研发,ARBS(空中加油吊杆系统)飞行测试项目第一阶段顺利完成,EADS CASA完成了这一新一代加油吊杆的设计和制造。飞行测试项目旨在验证安装在空中客车平台上的新型吊杆的性能,其中包括打开加油机的工作范围或与F-16进行干/湿接触等。这些测试的初步结果表明:飞机平台和吊杆结构没有任何形式的颤振