FRF(频率响应函数)提供了激励和响应之间的传递函数,它可以用来定位能量传递路径,或结构的一些重要动态特性
摘要 — 本文强调了能量收集在涉及使用有源 RFID 标签的高价值资产监控应用中的重要性。本文首先强调了有源标签的优势,包括在电磁不友好环境中提高范围和读取率。虽然电池可以大大提高性能,但它限制了免维护使用寿命。因此,从振动等来源收集能量可以解决这一缺点,但这些来源必须充足、在整个应用生命周期内可用并且高效。确定了此类系统的压电振动能量收集设计程序和组件。这包括三个关键组件,即能量收集传感器、电源管理电路和能量存储设备。描述了能量收集系统的每个组件,并强调了重要的设计标准。最后,本文通过分析救灾期间使用的高价值资产的振动数据,并描述能量收集原型的初步结果,详细介绍了系统外形尺寸、效率和寿命。
经典模态分析被扩展以处理一般非粘性阻尼多自由度线性动态系统。新方法与现有方法类似,但由于阻尼机制的非粘性效应而进行了一些修改。引入了(复杂)弹性模态和非粘性模态的概念,并提出了获取它们的数值方法。进一步表明,可以根据这些模态精确地获得系统响应。已知为无阻尼或粘性阻尼系统的模态正交关系已推广到非粘性阻尼系统。开发了几个将模态与系统矩阵相关联的有用结果。
HBM Prenscia 是全球领先的技术和工程软件产品和服务提供商,致力于提供可靠性、耐用性和性能。我们提供广泛的工程解决方案,为我们的客户提供设计和开发可靠、强大的系统的强大价值,并降低机械和电子硬件和软件(机电一体化)的生命周期成本。通过提供一系列行业领先的软件(nCode 和 ReliaSoft)、培训和服务(Prenscia Solutions 和 Omnicon),我们使公司能够通过设计和认证、优化流程、数据管理和处理以及 CAE 模拟来提高投资回报和运营成功率。有关更多信息,请访问 www.hbmprenscia.com
航空弹性振动是由空气动力和风力涡轮叶片的结构动力学之间的复杂相互作用引起的,是导致疲劳,结构损伤,效率降低以及风力涡轮机系统中维护成本提高的主要原因。解决此问题对于增强风力涡轮机的运行性能,耐用性和寿命至关重要,这使得振动控制成为可再生能源行业的关键重点。本文研究了同步开关阻尼(SSD)模态方法,这是一种非线性控制技术,专门为其通过靶向和抑制不需要的振动模式而有效减轻航空弹性振动的能力。通过将压电组件与刀片运动和谐的指定电路同步,SSD模态方法可提供精确而适应性的振动控制。我们的研究证明了半活动模态SSD方法的有效性,从而降低了叶片振动的30.42%。这种实质性的减少不仅增强了整体性能,还可以增强风力涡轮机叶片的寿命,从而在振动控制策略方面取得了重大进步,并有助于开发更可靠和有效的风能系统。
本研究提出了二维功能梯度 (2D-FG) 金属陶瓷多孔梁静态屈曲和自由振动分析的解析解。为了实现这一目标,利用汉密尔顿原理推导出梁的运动方程,然后在 Galerkin 著名的方程解解析法框架内求解导出的方程。梁的材料属性随厚度和长度的变化而变化,符合幂律函数。在功能梯度材料 (FGM) 的制造过程中,可能会由于技术问题导致微孔出现而出现孔隙。本文给出了详细的数学推导并进行了数值研究,重点研究了各种参数(例如厚度和长度两个方向上的 FG 功率指数、孔隙率和细长比 (L/h))对基于新高变形梁理论的梁的无量纲频率和静态屈曲的影响。通过将结果与公认的研究进行比较,验证了所提出模型的准确性。根据屈曲和振动分析的结果,所提出的沿厚度方向的修改的横向剪应力与TBT相比表现出更接近的结果。
发布此 RFI 仅作为技术探索和信息收集的手段,旨在确定和识别南非航空航天和工程工业部门的能力。此 RFI 并非对潜在承包商进行资格预审的邀请,参与纯属自愿。 2. 背景 此 SANSA 项目旨在将 Houwteq 振动测试设施升级到国家航天工业能够专业满足其未来日益增长的开发测试、鉴定和有时验收主要航天设备和系统的需求的状态。发布此 RFI 仅用于信息收集和规划目的;此 RFI 不构成正式的提案征集。请注意,对此 RFI 的回复将严格保密,仅用于未来支持南非航天工程工业部门的主题开发。 3. 所需信息 所有信息应按照本文件中提供的说明提交。不接受机密回复。SANSA 要求回复者评估此 RFI 附件 A 中规定的要求,并提交他们能够提供的解决方案系统提案。提案应解决技术解决方案的概念和范围、实施计划和时间表、风险方面、所做的假设、预期的客户提供的物品和接口、长交货期物品以及任何相关的 SHEQ 方面。
摘要:这项研究研究了由于振动暴露而导致两轮电动汽车电池组的结构保护水平。这项研究包括两个阶段:首先,对固定装置和电池组中的谐振频率进行了探索,然后使用UN ECE R136测试配置文件进行振动测试,其中包括7-200 Hz的频率范围以及10-80 m/s²之间的频率范围。这些测试旨在模仿典型操作过程中两轮电动电池经历的振动暴露。振动周期重复七次,每个周期后,对电池组结构进行评估,使用72伏20 AH Li-Ion电动摩托车电池组作为测试样品。结果表明,电池组的共振在28 Hz时产生的共振,导致加速扩增超过了所施加的振动暴露的40%,总力量高达226.95 n,电池结构压力为226.95 n。共振严重损害了所有四个弹性基础,而BMS支架支撑上电池结构。这些发现强调了对电池组结构进行进一步研究的必要方法,用于在所有测试条件下能够承受共鸣的两轮电动汽车,从而确保了电池组的安全性和耐用性。
1。扭曲传感器引导在一起(每英尺至少10个曲折)。2。将扭曲的引线滑过铁氧体芯,两次将其定位为接近传感器的实用性。请参阅图1和2。3。,如果可能的话,将导线缩小并使用屏蔽的扭曲对。也遵循此应用程序中的步骤2。如图2所示,可以通过将不同数量的电线转弯通过铁氧体芯来创建那些减弱不同频率的铁氧体核“窒息”。更多的转弯会增加诱导性并逐渐降低频率。可以以这种方式创建多个“窒息”,并将其串联放在电线上,导致覆盖宽频带。始终定位覆盖最接近传感器的较高频带的扼流圈。
测量声音的一种方法是振幅,它表示分贝(db)中的强度。也可以将声音作为频率测量,用Hz或KHz表示。声音频率是指振动的数量(或周期)每秒都在赫兹(Hz)中测量。健康的人耳通常可以感知到20 Hz至20,000 Hz范围内的声音频率,或者简称为20 kHz。1对于视角,低音低音介于20 Hz至250 Hz之间,250 Hz和4 kHz之间的人类语音以及4 kHz至20 kHz的高音声音)。声音频率高于20 kHz,通常被认为是超声波,通常超出了人类的感知。