人机协作是许多领域中一种很有前途的范例,因为它有可能充分利用人类的灵活性和机器人的精确性 (Reason, 2000)。即使有了极其复杂和高度发展的技术,机器人系统也主要由人类操作,干预和控制程度也各不相同 (Power 等, 2015)。然而,需要外科医生远程操纵机械臂的遥控控制可能会带来诸如模糊性和缺乏运动反馈等问题 (Chen 等, 2007),从而导致过度的心理工作负荷 (MWL),进而影响外科医生的表现。由于极端的 MWL 会降低性能并增加错误概率 (Yurko 等, 2010),操作员的工作负荷正成为决定人机协作是否成功的核心问题。因此,人们对开发能够在任务执行期间根据操作员的 MWL 为其提供不同程度协助的机器人的兴趣日益浓厚 (即基于心理工作负荷的自适应自动化) (MWL-AA)。
摘要。人们期待人工智能能改善人类在各个领域的决策能力,尤其是高风险、困难的任务。然而,人类对人工智能建议的依赖往往是不恰当的。解决这个问题的常用方法是向决策者提供有关人工智能输出的解释,但迄今为止结果好坏参半。人们往往不清楚何时可以适当地依赖人工智能,何时解释可以提供帮助。在这项工作中,我们进行了一项实验室实验(N = 34),以研究人类对(可解释的)人工智能的依赖程度如何取决于不同决策难度引起的心理负荷。我们使用脑电图(Emotiv Epoc Flex 头罩,32 个湿电极)来更直接地测量参与者的心理负荷,而不是自我评估。我们发现,决策的难度(由诱发的心理负荷表明)强烈影响参与者适当依赖人工智能的能力,这通过相对自力更生、相对人工智能依赖以及有无人工智能的决策准确性来评估。虽然依赖对于低脑力负荷决策是合适的,但参与者在高脑力负荷决策中容易过度依赖。在这两种情况下,解释都没有显著影响。我们的结果表明,应该探索常见的“推荐和解释”方法的替代方案,以帮助人类在具有挑战性的任务中做出决策。
Infinidat 的 RAG 工作流架构在 Kubernetes 集群上运行。想要使用本地数据运行 RAG 但没有可用 GPU 资源的用户可以利用云快速便捷地解决问题。我们的方法使用 Kubernetes 集群作为运行 RAG 管道的基础,从而实现高可用性、可扩展性和资源效率。借助 AWS Terraform,我们大大简化了 RAG 系统的设置,只需一个命令即可运行整个自动化。同时,在 InfiniBox 本地和 InfuzeOS™ Cloud Edition 之间运行的相同核心代码使复制变得轻而易举。在 10 分钟内,一个功能齐全的 RAG 系统就可以在 InfuzeOS Cloud Edition 上处理您的数据。
摘要 — 机器学习 (ML) 技术的快速发展推动了专用硬件加速器的发展,旨在促进更高效的模型训练。本文介绍了 CARAML 基准测试套件,该套件用于评估在一系列硬件加速器上训练基于 Transformer 的大型语言模型和计算机视觉模型时的性能和能耗,包括 NVIDIA、AMD 和 Graphcore 的系统。CARAML 提供了一个紧凑、自动化、可扩展和可重复的框架,用于评估各种新型硬件架构中 ML 工作负载的性能和能耗。本文详细讨论了 CARAML 的设计和实现,以及一个名为 jpwr 的自定义功率测量工具。索引术语 — 机器学习、能量、NLP、计算机视觉、AI、性能测量、基准、GPU、IPU、加速器
抽象数据机密性是数字时代的关键问题,影响了用户与公共服务之间以及科学计算组织与云与HPC提供商之间的互动。并行计算中的性能是必不可少的,但对于建立受信任的执行环境(TEE)以确保遥远环境中的隐私通常会对执行时间产生负面影响。本文旨在分析在英特尔SGX处理器机密的飞地内执行的DNA对齐(Bowtie2)的平行生物信息学工作负载的性能。结果提供了令人鼓舞的见解,内容涉及在大型数据集上使用基于SGX的TEE进行并行计算的可行性。调查结果表明,在高平行化条件下,并具有两倍的线程,在SGX飞地中执行的工作负载平均比非固定执行快15%。这种经验证明支持基于SGX的TEE有效平衡隐私需求与高性能计算的需求的潜力。
摘要:背景:创建模型来区分自我报告的心理工作量感知具有挑战性,需要机器学习来识别脑电图信号中的特征。脑电图频带比率量化了人类活动,但对心理工作量评估的研究有限。本研究评估了使用 theta-to-alpha 和 alpha-to-theta 脑电图频带比率特征来区分人类自我报告的心理工作量感知。方法:在本研究中,分析了 48 名参与者在休息和任务密集型活动时的脑电图数据。使用不同的脑电图通道簇和频带比率开发了多个心理工作量指标。使用 ANOVA 的 F 分数和 PowerSHAP 提取统计特征。同时,使用逻辑回归、梯度提升和随机森林等技术建立和测试模型。然后用 Shapley 加法解释来解释这些模型。结果:根据结果,使用 PowerSHAP 选择特征可以提高模型性能,在三个心理工作量指数中表现出超过 90% 的准确率。相比之下,用于模型构建的统计技术表明所有心理工作量指数的结果都较差。此外,使用 Shapley 值来评估特征对模型输出的贡献,可以注意到,ANOVA F 分数和 PowerSHAP 测量中重要性较低的特征在确定模型输出方面发挥了最重要的作用。结论:使用具有 Shapley 值的模型可以降低数据复杂性并改进对感知人类心理工作量的更好判别模型的训练。但是,由于选择过程中特征的重要性及其对模型输出的实际影响有所不同,因此结果有时可能不明确。
在当今数据驱动的世界中,AI 不仅仅是一种奢侈品,更是保持竞争力的必需品。但是,随着 AI 深入融入业务运营,它为数据保护带来了独特的挑战。Dell PowerProtect 数据保护直面这些挑战,提供全面的解决方案,确保您的 AI 数据安全无虞,业务运行顺畅。数据保护的迫切需求 根据 Dell Technologies 生成式 AI 脉搏调查,76% 的 IT 领导者认为 AI 将对其组织产生重大甚至变革性的影响 1 。对 AI 的依赖性增加也意味着生成的数据量和价值激增。近 90% 的组织承认 AI 应用程序中需要数据保护,但 65% 的组织仅备份了不到其总 AI 数据的一半 2 。这一差距凸显了从规划阶段到部署阶段对强大数据保护策略的迫切需求。为什么 AI 工作负载需要专门的保护 AI 工作负载与任何其他业务功能一样重要,但极易受到网络威胁。常见风险包括数据中毒、勒索软件、隐私泄露和社会工程。生成式 AI (GenAI) 应用程序(如大型语言模型 (LLM))的使用引入了新的攻击面,使数据保护比以往任何时候都更加重要。为 AI 工作负载提供全面的数据保护 Dell PowerProtect 数据保护提供了一种现代、简单且有弹性的方法来保护 AI 工作负载。从数据源到 AI 模型,从查询到响应,您的 AI 基础架构的每个组件都将受到保护。
Introduction ................................................................................................................................................... 4
• 言语病理学中的学校服务提供(asha.org) • 公立学校语言学习障碍学生协作服务提供模型(asha.org) • 如何:为 IEP 编写协作目标(asha.org) • 思考各种服务提供模型(asha.org) • 团体与个人治疗对社区环境中 6-12 岁儿童接受性和表达性语言发展的有效性:一个经过批判性评价的主题(asha.org) • 3:1 模型 - 提高学生成功率的众多工作量解决方案之一:工作量平衡模型使学校专业人员有机会提供直接和间接服务。:ASHA Leader 档案:第 24 卷,第 5 期 • 什么在协作中起作用?确定改善学校服务提供的关键因素 |学校的语言、言语和听力服务 (asha.org) • 学校的言语病理学服务:9 年后跟踪 | 学校的语言、言语和听力服务 (asha.org) • 服务交付时间表对言语产生结果的影响 | 学校的语言、言语和听力服务 (asha.org) • 加油!学校儿科喂养跨专业实践 | 学校的语言、言语和听力服务 (asha.org) • 学校环境下患有言语障碍的学龄儿童干预强度和服务交付模式比较 | 学校的语言、言语和听力服务 (asha.org)
图像分割是一项将数字图像的所有像素分成不同类别的任务。与对整个图像进行分类的图像分类不同,图像分割对图像的每个像素进行分类。该模型以固定大小的图像作为输入,并返回图像每个像素的置信度分数向量。得分最高的标签用作像素的标签。整个图像以多色马赛克的形式返回,其中每种颜色代表一种对象类型。