糖尿病(DM)是一种全身代谢疾病,具有高死亡率和发病率。细胞外囊泡(EV)已成为一种新型的信号分子,生物标志物和治疗剂。EVs-mediated intercellular and interorgan crosstalk of pancreatic islets plays a crucial role in the regulation of insulin secretion of b -cells and insulin action in peripheral insulin target tissues, maintaining glucose homeostasis under physiological conditions, and it ' s also involved in pathological changes including autoimmune response, insulin resistance and b -cell failure associated with DM.此外,EV可以作为生物标志物和治疗剂,分别反映了胰岛的状态并提高功能和生存能力。在这篇综述中,我们提供了电动汽车的概述,讨论了在生理和糖尿病条件下的EVS介导的胰岛的细胞间和跨组织串扰,并总结了电动汽车在DM诊断和处理中的新兴应用。对胰岛介导的EVS介导的胰岛间和实体间交流的更好理解将扩大和丰富我们对生理稳态维持以及DM的开发,诊断和治疗的了解。
金黄色葡萄球菌形成的生物膜由嵌入由蛋白质,多糖,脂质和细胞外DNA(EDNA)的基质中的细胞组成。生物膜相关的感染很难治疗并可以促进抗生素耐药性,从而导致负面的医疗保健结果。edna有助于金黄色葡萄球菌的稳定性,生长和免疫渗透特性。edna是由自溶的释放的,自溶的是由murein水解酶介导的,这些水解酶通过霍林样蛋白形成的膜孔进入细胞壁。金黄色葡萄球菌的EDNA含量在单个菌株之间有所不同,并且受环境条件(包括存在抗生素的存在)影响。edna通过充当促进蛋白质细胞和细胞 - 细胞相互作用的静电网,在生物膜的发育和结构中起重要作用。由于埃德娜(Edna)在生物膜中的结构重要性及其在金黄色葡萄球菌分离株中的普遍存在,因此它是治疗剂的潜在靶标。用DNase处理生物膜可以消除或大大减少它们的大小。此外,靶向与EDNA结合并稳定的DNABII蛋白的抗体也可以分散生物膜。本综述讨论了有关Edna在金黄色葡萄球菌中的发行,结构和功能的最新文献,此外还讨论了针对Edna靶向生物膜消除的潜在途径的文献。
我们的方法利用非病原性大肠杆菌在递送和呈递抗原时模仿细胞内病原体的布鲁氏菌融合体来刺激TH1和CTL反应。大肠杆菌通常是细胞外的,而布鲁氏菌是细胞内细菌。因此,我们启动了大肠杆菌(DH5α),以表达含有耶尔森氏菌的INV基因的质粒,单核细胞增生李斯特氏菌的基因和HLY基因[31]。通过结合αβ1-整合素异二聚体来引入宿主细胞的大肠杆菌侵袭。整合素的聚类后,Inva-sin激活了信号级联。一种信号通路会导致局灶性粘附组分的激活,包括SRC,局灶性粘附激酶和细胞乳蛋白蛋白,导致形成伪足,使细菌吞噬细菌进入宿主细胞。侵入蛋白与β1-整合蛋白的结合是必要的,并且足以诱导细菌的吞噬,即使是非专业的吞噬细胞。第二个途径,包括Rac1,NF-κB的激活和有丝分裂原激活的蛋白激酶,导致促炎细胞因子的产生[32]。互隔化后,将大肠杆菌带入发生细菌裂解的吞噬体/溶酶体。HLY基因产物以及其他细菌蛋白被释放到乳胶囊泡中。硫酸激活的Hly,也称为李斯特氏蛋白酶O(LLO)是一种在低pH值下的结合和孔形吞噬体膜的孔形成细胞溶胶蛋白酶。此批判步骤将抗原从大肠杆菌出口到细胞质细菌的细胞质含量可以通过LLO产生的孔中逃脱到乳腺细胞的胞质区室。
抽象的支原体物种是能够自我复制的最小原核生物。在体外感染模型中使用了哺乳动物细胞,支原体牛(M. bovis)和牛乳腺上皮细胞(BMEC)的支原体诱导的自噬。最初,细胞内牛乳杆菌被封闭在BMEC中的膜状结构中,如透射电子显微镜所看。在受感染的BMEC中,通过蛋白质印迹,RT-PCR和激光共聚焦显微镜证实了LC3II的增加,并在感染后1、3和6 h时确认自噬,并在6 hpi处峰值。然而,随后阻塞了牛肉菌诱导的自噬通量。p62降解。beclin1表达在12和24 hpi时降低。此外,自噬体成熟被Bovis颠覆。自噬体酸化。 LAMP-2a蛋白质水平的降低表明溶酶体受到感染的损害。相比之下,自噬(带雷帕霉素或HBSS)激活通过增加牛乳杆菌向溶酶体的递送,克服了牛肉杆菌诱导的吞噬型封锁,并同时降低了细胞内牛bovis的bovis重复。总而言之,尽管牛乳杆菌感染在BMEC中诱导了自噬,但随后抑制自噬 - 某些成熟的自噬通量受到了损害。因此,我们得出的结论是,牛乳杆菌颠覆了自噬以促进其在BMEC中的细胞内复制。这些发现是未来研究的动力,以进一步表征Bovis和哺乳动物宿主细胞之间的相互作用。关键字:支原体牛,牛乳腺上皮细胞,自噬,溶酶体,细胞内复制
第一个且最研究的类别是外泌体。这些外泌体是通过入侵内体膜形成多个物体(MVB)来得出的,后者包围了许多腔内囊泡。MVB与质膜融合后释放为外泌体,大小为50–150 nm。第二个主要类型的囊泡是微泡(MV),其大于外泌体,大小为100–1000 nm。evs通过直接向外萌芽和质膜的裂变释放。第三类EV是由经历编程细胞死亡并变成碎片的细胞形成的凋亡人物。这些囊泡较大,范围从500 nm到几微米的大小[11]。evs携带蛋白质,脂质和不同类型的RNA货物,可以从供体细胞转移到受体细胞[12,13]。开创性研究表明,电动汽车货物中的功能性信使RNA(mRNA)转移到受体细胞中,可以转化为蛋白质[14,15]。这个概念得到了各种研究人员的支持[16-19]。evs还可以将microRNA(miRNA),蛋白质和脂质转移到靶细胞[20,21]。先前的研究表明,源自替代β细胞的EV可以将幼稚的MSC调节到IPC中[22]。这项研究的目的是优化源自替代β细胞和幼稚MSC的EV的共培养条件。评估了细胞/EV的比率和共培养的持续时间。
几乎所有细胞类型都能够分泌小细胞外囊泡(SEV),可以通过受体细胞内化,从而用作细胞间通信的车辆。这些囊泡的货物,例如microRNA,圆形RNA,蛋白质和脂质,在正常细胞功能和各种疾病的发病机理中都起着重要作用。糖尿病性肾病(DN)是由糖尿病引起的并发症,预计在2015年至2030年之间将使全球糖尿病人群增加54%,从而导致个人和医疗保健系统的实质性经济负担。Sevs作为有希望的生物标志物,在不同类型的糖尿病肾病(DKD)中表现出不同的机械反应。他们在肾脏损害的早期预测中也具有优势。本文回顾了DKD中SEV的功能机制及其作为治疗靶标和生物标志物的潜力。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
1。广东省级医学诊断省主要实验室实验室医学诊断,快速诊断生物传感器,广东省级诊断生物传感器的工程和技术研究中心,广东省级单细胞技术和应用主要实验室,南方医学院,南部医学院,广州南部医学院,广州,510515,中国。2。脑部疾病机构,南方医院,南科尔大学,广东,广东,510515,中国。3。约翰·霍普金斯大学医学院分子与比较病理生物学系,美国马里兰州马里兰州。4。中国广州南科医学院Nanfang医院神经外科系。 5。 神经外科中心,国家关键临床专业,中国工程技术研究中心关于脑血管疾病诊断和治疗,广东省脑功能修复和再生的关键实验室,脑血管疾病,脑血管疾病,脑功能修复和再生,神经外科研究所,广东省南部医学院,南部医学院,北部医学院。中国广州南科医学院Nanfang医院神经外科系。5。神经外科中心,国家关键临床专业,中国工程技术研究中心关于脑血管疾病诊断和治疗,广东省脑功能修复和再生的关键实验室,脑血管疾病,脑血管疾病,脑功能修复和再生,神经外科研究所,广东省南部医学院,南部医学院,北部医学院。
间充质干细胞(MSC)参与了不同缺失或受损的牙周组织的再生。MSC衍生的小细胞囊泡(SEV)最近被探讨为干细胞疗法的有利替代,因为它们能够产生与母细胞的治疗作用相当的治疗作用,并且在细胞疗法上具有优势。本综述的目的是评估间充质干细胞(MSC)衍生的SEV作为牙周再生中无细胞治疗的使用。对SEV的科学文献进行了综述及其在牙周再生中的使用。描述了SEV的主要特征,并研究了其作用机理和牙周再生中潜在的生物学作用。进行了在动物中进行的现有临床前研究的摘要。结果表明,从MSC得出的SEV正在成为牙周再生领域中有希望的新治疗工具,并且可能成为理想的治疗选择。在这篇评论中,我们总结了这方面的最新进展,以便更好地了解这种新兴的治疗方法。首先会导致体内有望,并显示出无细胞再生治疗的有利潜力。
