随着围产期护理的持续改善,可行的早产儿的数量正在逐渐增加,以及早产相关疾病的增加,例如坏死性小肠结肠炎,支气管肺发育异常,围产期脑脑损伤,预性脑病,预性过早以及SEPIS。由于早产儿的独特病理生理学,诊断和治疗这些疾病变得尤为具有挑战性,显着影响其生存率和长期生活质量。细胞外囊泡(EV)作为细胞间交流的关键介体,在这些疾病的病理生理学中起着重要的调节作用。由于其生物学特征,电动汽车可以作为早产相关疾病的生物标志物和潜在的治疗剂。本综述总结了电动汽车的生物学特性,它们与早产相关疾病的关系及其诊断和治疗的前景。evs面临临床应用的独特挑战和机会。
摘要:细胞外囊泡的分泌,EVS,是原核生物和真核细胞的常见过程,用于细胞间交流,生存和发病机理。先前的研究表明,来自细菌纯培养物的上清液中的EV存在,包括革兰氏阳性和革兰氏阴性的聚糖降解肠道分子。但是,复杂微生物群落分泌的电动汽车的隔离和表征尚未清楚地报告。在最近的一篇论文中,我们表明,木材衍生的复杂β -mannan与常规饮食纤维具有结构性相似,可用于调节猪肠道肠道菌群的组成和活性。在本文中,我们研究了24小时在复合β -Mannan富集后,猪粪便菌群分泌的EV的产生,大小,组成和蛋白质组。使用透射电子显微镜和纳米颗粒跟踪分析,我们以165 nm的平均大小识别电动汽车。我们利用猪蛋白的基于质谱的元蛋白质蛋白基于猪蛋白的数据库,并从猪群中鉴定出355个元基因组组装的基因组(MAG),从而鉴定出303蛋白。对于从β -mannan生长的培养物中分离出来的EV,大多数蛋白质映射到两个MAGS MAG53和MAG272,分别属于梭菌和细菌。此外,具有第三次蛋白质的MAG为MAG 343,属于肠杆菌阶。在β -Mannan EV蛋白质组中检测到的最丰富的蛋白质参与了翻译,能量产生,氨基酸和碳水化合物转运以及代谢。总体而言,这项概念验证研究表明,从复杂的微生物群落中释放出的电动汽车的成功隔离。此外,电动汽车的蛋白质含量反映了特定微生物对可用碳水化合物源的响应。
真菌和细菌都生活在各种环境中,它们的相互作用在许多过程中都很重要,包括土壤健康,人类和动物生理以及生物技术应用。很难建立这些微生物之间相互作用的特异性。例如,与互动或反性相互作用相比,由于随机混合而导致的琐碎过程之间的分化。在这里,我们研究了菌丝形成生物膜形成液体培养物中浮游细菌生长共培养的单一形态学特征。也就是说,枯草芽孢杆菌的细菌共同援助因子附着于物种Hericium erinaceus的真菌菌丝。开发并利用了细菌中的细菌方法,可通过遏制在细胞外聚合物物质(EPS)和菌丝体整体细胞外基质(ECM)中连接细菌。由于产生EPS,启动结构似乎是由菌丝表面造成的。 T1-3的平均生物膜面积为3.90(µm 2)±0.72(µm 2),平均百分比覆盖率为18.33(%)±5.52(%)。 由于存在连接单个细菌和菌丝的结构,因此不能排除细菌生物膜成分的共同归因于附着结构的形成。启动结构似乎是由菌丝表面造成的。T1-3的平均生物膜面积为3.90(µm 2)±0.72(µm 2),平均百分比覆盖率为18.33(%)±5.52(%)。由于存在连接单个细菌和菌丝的结构,因此不能排除细菌生物膜成分的共同归因于附着结构的形成。
细胞外矩阵(ECM)是一个大分子网络,具有两种形式:神经神经元网(PNN)和一个弥漫性ECM(DECM) - 均影响大脑的影响,突触形成,神经塑性,神经塑性,CN,CNS损伤和进步神经变性性疾病。ECM重塑会影响外鼻外传播,这是由神经活性物质在细胞外空间(ECS)中的扩散介导的。在这项研究中,我们分析了PNN和DECM影响脑部扩散性的干扰。在口服4-甲基木纤维酮(4-mu)的大鼠(HA)合成抑制剂4-甲基木纤维酮(4-mu)后,我们发现PNNS,HA,HA,软骨蛋白硫酸软骨蛋白聚糖蛋白酶和闪光酸性酸性蛋白质的染色下调。4个月和6个月后,这些变化得到了增强,并且在正常饮食后是可逆的。形态分析进一步表明星形胶质细胞的萎缩。使用实时离子噬方法的ECM失调导致体感皮质中的ECS体积分数α增加35%,从对照大鼠的α= 0.20到4-MU饮食后的α= 0.27。扩散加权的磁共振成像显示,在皮质,海马,丘脑,pallidum和脊髓中,平均扩散率和分数各向异性(FA)的降低。这项研究表明,由于PNN和DECM的调节,ECS体积的增加,FA的损失以及星形胶质细胞的变化可能会影响外突触外传播,细胞间通信和神经可塑性。
抽象的DNA甲基化在所有生命领域都具有多种功能。在这项研究中,我们研究了三方二烷基卤代联盟中的古细菌甲基团。该联盟包括Haloferax Lucertense SVX82,Halorhabdus sp。svx81,以及一个来自dpann superphylum的纳米尺寸的纳米大小的古scultus svxnc。我们利用PACBIO SMRT和Illumina cDNA测序来分析来自不同组成的甲基甲基组学和转录组学的样品。内源性C TAG甲基化(典型的Haloferax)伴随着甲基化在其他四个基序中,包括GDG C HC甲基化,这是外尾疗特定的。我们对甲基化和未甲基化基序的分布的分析表明,自phat甲基化可能会影响基因调节。Graga A G甲基化的频率在高度表达的基因中增加,而C C TTG和GTCG A GG甲基化可以与限制性修饰(RM)活性有关。一般而言,在该古代的演变过程中,RM活性可能已经降低,以平衡细胞免受入侵者的保护,在压力环境中自限制引起的DNA损伤的减少以及在极端条件下DNA交换的益处。我们的甲基甲基菌群(Cryo-ET)数据表明,我们的甲基甲基分析酶导出了其甲基转移酶,以甲基化Haloferax基因组,揭示了共生体与宿主之间的相互作用的新方面。
的原理:对操纵信号通路的当前理解,以产生所有分泌激素的内分泌细胞类型(即,从诱导的多能干细胞(IPSC)中)具有所有主要分泌激素的内分泌细胞类型(即α,β,β,δ和γ细胞)的理解。但是,供体胰岛短缺需要我们在体外产生功能性胰岛。在这项研究中,我们旨在找到脱细胞的胰腺外基质(DPECM)蛋白,以利用信号通路并促进功能性IPSC胰岛胰岛器官发生。方法:我们进行了蛋白质组学分析,以识别猪和大鼠DPECM的关键胰岛促进因子。这样,我们将II型胶原蛋白(COL2)确定为一种潜在的生物材料提示,可以认可IPSC的胰岛发育。使用全球转录组分析,基因集富集分析,免疫荧光显微镜,流式细胞术,蛋白质印迹和葡萄糖刺激的激素分泌分析,我们检查了COL2在调节IPSC胰腺pancreatic谱系规范和信号通路方面的作用,对等初学和等级有机化和形成。结果:我们发现COL2充当了一种功能性生物材料,可增强IPSC的胰岛发育,类似于胶原蛋白型V(COL5),如我们先前的研究中所报道的。col2基本上刺激了内分泌祖细胞和随后的胰岛类器官的形成,其胰腺签名基因和蛋白质表达显着升高。此外,它增强了胰岛对激素分泌的葡萄糖敏感性。结论:我们证明了DPECM在精炼干细胞分化微环境中的至关重要的作用,以进行器官发育和成熟。与各种信号通路相关的基因表达簇,包括但不限于氧化磷酸化,胰岛素分泌,细胞周期,规范WNT,缺氧和干扰素反应,受到Col2和Col5提示的极大影响。我们关于干细胞规范,器官发生和成熟的生物材料刺激信号传导的发现,为增加内分泌组织的分化疗效提供了一种新方法,这可以有助于生物学功能性胰岛的产生。
保留所有权利。未经许可就不允许重复使用。永久性。预印本(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以在2025年2月6日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.05.25321729 doi:medrxiv preprint
关于电动汽车的出版物。在EV计量学以及理解和应用EV生物学方面已取得了重要的进步。然而,由于EV命名法的挑战,与非详细细胞外颗粒的分离,表征和功能研究,由于基本生物学到临床应用的范围,障碍仍在实现从基本生物学到临床应用的潜力。为了解决这个迅速发展的领域中的挑战和机会,国际细胞外囊泡学会(ISEV)更新了其“最小的细胞外囊泡研究信息”,该学会于2014年首次发布,然后于2018年出版为Misev2014和Misev2018和Misev2018,并进行了评估。当前文档MISEV2023的目标是为研究人员提供可用方法的更新快照及其对电动汽车从多个来源的生产,分离和表征的优势和局限性,包括细胞培养,身体流体和实心组织。除了在电动汽车研究的基本原理中介绍最新的艺术状态外,该文档还涵盖了目前正在扩大该领域边界的先进技术和方法。MISEV2023还包括有关EV释放和摄取的新部分,以及对研究电动汽车的体内方法的简短讨论。汇编来自ISEV专家工作队和1000多个研究人员的反馈,该文档传达了电动汽车研究的现状,以促进稳健的科学发现并更快地推动该领域的前进。
摘要 免疫治疗策略旨在通过主要针对 T 细胞来调动针对肿瘤细胞的免疫防御。共抑制受体或免疫检查点 (ICP)(例如 PD-1 和 CTLA4)可以限制 T 细胞受体 (TCR) 信号在 T 细胞中的传播。基于抗体的免疫检查点阻断(免疫检查点抑制剂,ICI)可以逃避 ICP 对 TCR 信号的抑制。ICI 疗法已显著影响癌症患者的预后和生存。然而,许多患者对这些治疗仍然有抵抗力。因此,需要替代的癌症免疫治疗方法。除了膜相关抑制分子外,越来越多的细胞内分子也可能起到下调由 TCR 参与触发的信号级联的作用。这些分子被称为细胞内免疫检查点 (iICP)。阻断这些细胞内负信号分子的表达或活性是增强 T 细胞介导的抗肿瘤反应的一个新领域。这个领域正在迅速扩大。事实上,已经发现了 30 多种不同的潜在 iICP。在过去 5 年中,已经注册了多项针对 T 细胞中 iICP 的 I/II 期临床试验。在本研究中,我们总结了最近的临床前和临床数据,证明针对 T 细胞 iICP 的免疫疗法可以介导实体瘤(包括(膜相关)免疫检查点抑制剂难治性癌症)的消退。最后,我们讨论了如何靶向和控制这些 iICP。因此,iICP 抑制是一种有前途的策略,为未来的癌症免疫疗法开辟了新途径。
