尽管基于 CRISPR-Cas9 的技术得到了快速而广泛的应用,但用于调节剂量、时间和精度的便捷工具仍然有限。基于使用合成肽核酸 (PNA) 以异常高的亲和力结合 RNA 的方法,我们描述了向导 RNA (gRNA) 间隔区靶向或“反间隔区”PNA,作为以序列特异性方式调节细胞中 Cas9 结合和活性的工具。我们证明 PNA 可以快速有效地以低剂量靶向复合 gRNA 间隔区序列,并且不受序列选择性 Cas9 抑制的设计限制。我们进一步表明,短 PAM 近端反间隔区 PNA 可实现有效的切割抑制(减少超过 2000 倍),并且 PAM 远端 PNA 可改变 gRNA 亲和力以促进靶向特异性。最后,我们应用反间隔物 PNA 来对两个 dCas9 融合系统进行时间调控。这些结果提出了一种新颖的合理核蛋白工程方法,并描述了一种可快速实施的 CRISPR-Cas9 调节反义平台,以提高应用的时空多功能性和安全性。
癌症是恶性细胞增殖和指导的一种疾病,在功能和形态上与健康细胞不同[1]。因此,肿瘤诱导了一种系统性炎症反应,导致神经内膜变化,蛋白水解增加和负氮平衡。此外,食欲不振和食物摄入量减少。因此,发展为癌症继发的病理是可诊断的,例如营养不良,肌肉减少症和卡氏症,通常是诊断性的[2]。鉴于这种情况,营养疗法是癌症患者护理的多学科方法的一部分。因此,继发于癌症的疾病的营养筛查和早期诊断是有益的,有助于为这些患者建立个性化和有效的培养。宏营养素的充分性,尤其是蛋白质,使患者对其处理的临床状态更有效[3,4
有机酸在食品和饮料行业中很常见,可以在水果、蔬菜和葡萄酒等多种样品中找到。在 HALO AQ-C18 色谱柱上使用低 pH 值的 100% 水相流动相对九种极性有机酸进行分离。选择 250 毫米长的色谱柱可为这种极性混合物提供出色的分辨率和合理的运行时间。
摘要:不寻常的核酸结构是内源性修复的显著触发因素,可在序列特异性环境中发生。肽核酸 (PNA) 依靠这些原理实现非酶促基因编辑。通过在基因组内形成高亲和力异质三链结构,PNA 已被用于纠正多种人类疾病相关突变,且对靶标的影响较低。分子设计、化学修饰和递送方面的进步使得 PNA 能够在体内系统应用,从而在临床前小鼠模型中实现可检测的编辑。在 β 地中海贫血模型中,接受治疗的动物表现出临床相关的蛋白质恢复和疾病表型改善,表明 PNA 有可能用于治疗单基因疾病。本综述讨论了 PNA 技术的原理和进展及其在基因编辑中的应用,重点是结构生物化学和修复。
炎症性肠病 (IBD) 包括溃疡性结肠炎 (UC) 和克罗恩病 (CD),是一种慢性复发性疾病,影响着全球约 700 万人 [1,2]。IBD 是一种多因素疾病,与饮食、遗传、环境、肠道微生物群和免疫系统之间存在复杂的相互作用,但其机制仍不太清楚 [3]。目前,IBD 治疗包括针对免疫系统的生物和小分子疗法。这些药物可能有严重的副作用,包括感染、恶性肿瘤和血栓栓塞。此外,它们只能在一部分患者中实现持续缓解 [4],这凸显了对新治疗方法的需求。最近的进展表明,胆汁酸 (BA) 等肠道代谢物在 IBD 中也至关重要。BA 是由胆固醇衍生的两亲性分子,形成原代 BA。这些原发性胆汁酸经历肠肝循环,并可被肠道菌群去偶联形成次级胆汁酸。胆汁酸通过作为信号分子激活多种胆汁酸受体 (BAR) 对肠道发挥作用,从而调节肠道稳态 [5]。深入了解胆汁酸在 IBD 中的作用可能会发现以前未知的发病机制并揭示治疗 IBD 的新方法。在本综述中,我们全面概述了最近阐明胆汁酸的合成和功能及其在 IBD 发病机制中的多因素作用的研究,讨论了几种潜在的基于胆汁酸的 IBD 治疗方法,并确定了进一步研究的领域,以加深我们对胆汁酸和 IBD 之间复杂相互作用的理解。我们对 2020 年 1 月至 2024 年 10 月期间的 PubMed、Embase 和 Scopus 数据库进行了全面搜索,以查找关于胆汁酸在 IBD 中的作用的英文文章。使用的具体搜索词如下:“胆汁酸”、“胆汁盐”、“炎症性肠病”、“IBD”、“克罗恩病”、“CD”、“溃疡性结肠炎”、“UC”和“结肠炎”。筛选过程涉及两名独立审阅者(SHB 和 SC),他们首先评估标题和摘要,以确定可能相关的
自2022年在阿姆斯特丹举行的最后一次国际胆汁酸会议以来,胆汁酸研究领域一直在蓬勃发展。已经获得了胆汁酸信号传导在肝脏和肠中的作用,胆汁酸及其受体在肠道肝轴,胆汁酸微生物组相互作用以及HCC发育中的作用。FXR不仅进化为胆汁淤积性肝病的靶标,而且最近也是纳什的靶标。此外,胆汁酸转运蛋白ASBT和NTCP的抑制剂最近已被批准用于治疗进行性家族性肝内胆汁淤积(PFIC),阿拉吉尔综合征中的胆汁淤积瘙痒以及慢性HBV/HDV共同感染。XXVII国际胆汁酸会议将致力于胆汁酸研究的基本和临床方面,重点是胆汁酸转运和信号在健康和疾病中的作用,胆汁酸与微生物组的相互作用以及胆汁酸在肿瘤发展中的作用。使用胆汁衍生物,胆汁酸受体激动剂或胆汁酸转运蛋白抑制剂的治疗策略的新方面是本次会议的另一个重点。最新发现将由这些领域的主要科学家和临床医生提出。在研讨会期间,还将举行海报会议。符合国际胆汁酸会议的传统,科学委员会将选择一些最好的海报摘要,并邀请作者进行口头演讲。XXVII国际胆汁酸会议的组织者期待您欢迎您来到爱丁堡。
Test Includes: Taurine, threonine, serine, asparagine, hydroxyproline, glutamic acid, glutamine, aspartic acid, ethanolamine, sarcosine, proline, glycine, alanine, citrulline, alpha-aminoadipic acid, alpha-amino-n-butyric acid, valine, cystine, cystathionine, methionine,异亮氨酸,亮氨酸,酪氨酸,苯丙氨酸,β-丙氨酸,β-氨基糖酸,鸟氨酸,碱性,赖氨酸,1-甲基组织,组氨酸,3-甲基激素,三甲基激素,精氨酸氨基糖苷,精氨酸糖酸酸,异糖酸酯,异糖素,粘膜酸氨基酸氨基酸盐,硫糖酶蜂窝状菌株, - 糖胞和蜂窝状菌株,糖胞和糖胞和蜂窝状菌株,色氨酸和精氨酸。在NMOL/mg肌酐中报道。
应对对重度抑郁症(MDD)的有效和个性化干预措施的开发提出的巨大挑战需要对等离子体氨基酸发挥及其在MDD病理学和药理学中的影响的复杂作用进行全面理解。氨基酸,由于它们在神经传递,代谢和免疫调节中的不可分割功能,因此在这种复杂的疾病中成为关键实体。我们的主要目标需要通过对等离子体氨基酸,MDD和药房策略之间的相互作用进行细致研究来揭示基本机制和揭开量身定制的处理。通过对现有文献进行彻底而详尽的审查,我们已经确定了有关MDD中血浆氨基酸的相关研究,从而发现了与健康同伴相比,MDD患者中氨基酸的特征中的值得注意的干扰。具体而言,色氨酸,苯丙氨酸和酪氨酸的代谢中的破裂,它们是必不可少的神经交易剂的前体,已成为前瞻性生物标志物,以及对depression病理生理学的关键因素。amnio酸在MDD中起着至关重要的作用,并且可能代表一个有吸引力的药理靶标,需要更多的研究才能完全揭示其潜在机制。关键词:主要抑郁症(MDD),血浆氨基酸,病理生理学,生物标志物,色氨酸含量
参考文献 1. Chang,ACY 和 Cohen,SM (1978) J. Bacteriol. 134, 1141-1156。 2. Bolivar,F., Rodriguez,RL, Green,PJ, Betlach,M., Heyneker,HL, Boyer, HW, Crosa,JH 和 Fallow,S. (1977) Gene 2, 95-113。 3. Vieira,J., 和 Messing,J. (1982) Gene 19, 259-268。 4. Sanger,F., Coulson,AR, Barrell,BG, Smith,AJH 和 Roe, B. (1980) J. Mol. Biol. 143, 161-178。 5. Zoller,MJ 和 Smith,M. (1982)核酸研究10,6487-6500。6.Zinder,ND和Boeke,JD(1982)基因19,1-10。7.Messing,J.、Gronenborn,B.、MUller-Hill,B.和Hofschneider,PH(1977)美国国家科学院院刊74,3642-3646。8.Gronenborn,B.和Messing,J.(1978)自然272,275-377。9.Messing,J.、Crea,J.和Seeburg,PH(1981)核酸研究9,309-321。10.Dotto,GP、Enea,V.和 Zinder,HD (1981) 病毒学 114, 463-473。 11. Dotto,GP 和 Horiuchi,K。 (1981) J.摩尔。生物。 153、169-176。 12. Miller,JH,Ganen,D.,Lu,P。和施密茨,A. (1977) J.摩尔。生物。 109, 275-301。 13. Mileham,AJ、Revel,HR 和 Murray,NE (1980) Mol。热内将军。 179、227-239。14.桑格,F.,尼克伦,S。和 Coulson,AR (1977) Proc。国家。科学学院。美国 74,5463-5467。 15. Schreier,PH 和 Cortese,R。 (1979) J.摩尔。生物。 129、169-172。 16. Ciliberto,G.、Raugei,G.、Costanzo,F.、Dente,L.和科蒂斯,R. (1983) 细胞正在出版。 17. Costanzo,F.、Castagnoli,L.、Dente,L.、Arcari,P.、Smith,M.、Costanzo,P.、Raugei,G.、Izzo,P.、Pietropaolo,TC、Bougueleret,L.、Cimino,F.、Salvatore,F.和科蒂斯,R. (1983) EMBO J. 2, 57-61 18. Hill,DF 和 Petersen,GB (1982) J.病毒学 44, 32-46。
摘要:细胞外囊泡(EV),蛋白质的内源性纳米载体,脂质和遗传物质已被用作核酸疗法的内在递送载体。ev是纳米化的脂质双层结合囊泡,从大多数细胞类型中释放出负责传递功能性生物学材料以介导细胞间通信并调节受体细胞表型。由于其先天的生物学作用和组成,电动汽车作为基于核酸的疗法的递送向量具有多种优势,包括低免疫原性和毒性,高生物利用度以及能够设计出对体内特定受体细胞的靶向能力。在这篇综述中,总结了目前对电动汽车生物学作用的理解以及载荷电动汽车在输送核酸疗法方面的进步。我们讨论了加载电动汽车的当前方法和相关的挑战,以及利用电动汽车的固有特征作为遗传疾病的核酸疗法的递送载体的前景。关键词:细胞外囊泡,核酸输送,外泌体,药物输送,装载1.基于核酸的治疗学,小的干扰RNA(siRNA),microRNA(miRNA),双链DNA(DSDNA)和反义寡核苷酸(ASOS)的序列是模态,因为它们是对造成的,因为它们是对造成的,因为它们是对造成的,因为它们是针对模态的。这些疗法的特异性是一种用于治疗各种疾病的靶向方法,包括遗传性淀粉样蛋白生成的转世肌动蛋白淀粉样变性,脊柱肌肉萎缩,杜尚的肌肉营养不良疾病,淀粉营养性侧壁硬化症,等等[1-3]。