1. N. Jacobson,例外李代数 2. L. ,,.f, Lindahl 和 F. Poulsen,调和分析中的薄集 3. I. Satake,半单代数群的分类理论 4. F. Hirzebruch、WD Newmann 和 SS Koh,可微流形和二次型(已绝版) 5. I. Chavel,一秩黎曼对称空间(已绝版) 6. R B. Burckel,C(X) 在其子代数中的特征 7. BR McDonald、AR Magid 和 KC Smith,环理论:俄克拉荷马会议论文集 8. Y.-T. Siu,分析对象的扩展技术 9. SR Caradus、WE Pfaffenberger 和 B. Yood,Calkin 代数和 Banach 空间上的算子代数 10. E. 0. Roxin,P.-T. Liu 和 RL Sternberg,《微分博弈与控制理论》11. M Orzech 和 C. Small,《交换环的 Brauer 群》12. S. Thomeier,《拓扑及其应用》13. J. M Lopez 和 KA Ross,《Sidon 集》14. WW Comfort 和 S. Negrepontis,《连续伪度量》15. K. McKennon 和 JM Robertson,《局部凸空间》16. M Carmeli 和 S. Malin,《旋转和洛伦兹群的表示:导论 1》7. GB Seligman,《李代数中的合理方法》18. DG de Figueiredo,《泛函分析:巴西数学学会研讨会论文集》19. L. Cesari、R. Kannan 和 JD Schuur,《非线性泛函分析和微分方程:密歇根州立大学会议论文集》20, JJ Schaffer,赋范空间中的球面几何 21. K. Yano 和 M Kon,反不变子流形 22. WV Vasconcelos,二维环 23. RE Chandler,豪斯多夫紧化 24. SP Franklin 和 BVS Thomas,拓扑学:孟菲斯州立大学会议论文集 25. SK Jain,环理论:俄亥俄大学会议论文集 26. BR McDonald 和 RA Mo"is,环理论 II:第二届俄克拉荷马会议论文集 27. RB Mura 和 A. Rhemtulla,可排序群 28. JR Graef,动力系统的稳定性:理论与应用 29. H.-C. Wang,齐次分支代数 30. E. 0. Roxin,P.-T. Liu 和 RL Sternberg,《微分博弈与控制理论 II》31. RD Porter,《纤维丛导论》32. M Altman,《承包商和承包商方向理论与应用》33. JS Golan,《模块类别中的分解和维度》34. G. Fairweather,《微分方程的有限元 Galerkin 方法》35. JD Sally,《局部环中理想的生成元数目》36. SS Miller,《复分析:纽约州立大学布罗克波特分校会议论文集》37. R. Gordon,《代数的表示理论:费城会议论文集》38. M Goto 和 FD Grosshans,《半单李代数》39. AI A"uda,NCA da Costa 和 R. Chuaqui,《数理逻辑:第一届巴西会议论文集》
在通用代数的操作属性中,习惯是基于两个具有某些出色属性的常数突出显示属性。这些常数称为零(0)和一(1)。在不同的代数中,它们可能具有不同的符号,但其性质相同。必须有一个对零的操作,这使得表达式有效(x,0)= 0。对于一个单元,在一般情况下,使用逆元素的概念。按照它,在每个元素x的代数中,必须有一个反元素x-1,以便以下语句为真:(x,x,x-1)=1。较弱的属性是属性(x,1)= x。此属性无法确定确切的单元,但通常对于研究代数陈述的转换通常是有用的,在可编程机器的情况下,这是与程序相对应的正式表达式。常数为零,通常将其区分为0位操作,以确定代数的类型。
PE1_1 逻辑与基础 PE1_2 代数 PE1_3 数论 PE1_4 代数和复几何 PE1_5 李群、李代数 PE1_6 几何与全局分析 PE1_7 拓扑 PE1_8 分析 PE1_9 算子代数和泛函分析 PE1_10 ODE 和动力系统 PE1_11 偏微分方程的理论方面 PE1_12 数学物理 PE1_13 概率 PE1_14 统计学 PE1_15 离散数学与组合数学 PE1_16 计算机科学的数学方面 PE1_17 数值分析 PE1_18 科学计算和数据处理 PE1_19 控制理论与优化 PE1_20 数学在科学中的应用 PE1_21 数学在工业和社会中的应用 PE2 物质的基本构成 粒子、核、等离子体、原子、分子、气体和光学物理
3. C. Ding,S. Kunnawalkam Elayavalli,论相对双精确群冯诺依曼代数的结构,arXiv:2211.05298,数学物理通讯,第 405 卷,第 104 期,2024 年。
物理学中最基本的概念之一是将系统分配到子系统中及其部分之间的相关性研究。在这封信中,我们在量子参考框架(QRF)协方差的上下文中探讨了这一概念,其中这种分区受对称约束的约束。我们证明,不同的参考框架观点会引起不同的子系统可观察的代数,这导致了子系统和纠缠的尺寸不变的框架依赖性概念。我们进一步证明,在对称约束施加对称性之前的下通勤的子代数可以在给定的QRF透视图中转化为对称性的代数。这样的QRF透视图不能继承子系统之间的区别,以相应的张量化性化为Hilbert空间和可观察的代数。由于发生这种情况的条件取决于QRF的选择,因此子系统局部性的概念取决于框架。
PE1_1 逻辑与基础 PE1_2 代数 PE1_3 数论 PE1_4 代数和复几何 PE1_5 李群、李代数 PE1_6 几何与全局分析 PE1_7 拓扑 PE1_8 分析 PE1_9 算子代数和泛函分析 PE1_10 ODE 和动力系统 PE1_11 偏微分方程的理论方面 PE1_12 数学物理 PE1_13 概率 PE1_14 统计学 PE1_15 离散数学与组合数学 PE1_16 计算机科学的数学方面 PE1_17 数值分析 PE1_18 科学计算和数据处理 PE1_19 控制理论与优化 PE1_20 数学在科学中的应用 PE1_21 数学在工业和社会中的应用 PE2 物质的基本构成 粒子、核、等离子体、原子、分子、气体和光学物理
1. 简介 3 2. 量子自旋系统 3 2.1. 自旋和量子数 3 2.2. 可观测量 4 2.3. 状态 4 2.4. 狄拉克符号 5 2.5. 有限量子自旋系统 7 3. 附录:C ∗ -代数 13 3.1. C ∗ -代数 13 3.2. C ∗ -代数中的谱理论 14 3.3. 正元素 16 3.4. 表示 17 3.5. 状态 18 4. 有限和无限量子自旋系统的一般框架 21 4.1. 有限系统的动力学 21 4.2. 无限系统 24 5. Lieb-Robinson 界限 25 5.1.动力学的存在 30 6. 基态和平衡态 32 6.1. 基态 32 6.2. 热平衡、自由能和吉布斯态的变分原理 33 6.3. Kubo-Martin-Schwinger 条件 35 6.4. 能量-熵平衡不等式 36 7. 无限系统和 GNS 表示 40 7.1. GNS 构造 40 7.2. 无限系统的基态和平衡态 43 8. 对称性、激发谱和相关性 45 8.1. Goldstone 定理 46 8.2. 指数聚类定理 51 9. 附录:李群和李代数 56 9.1.李群和李代数的表示 57 9.2. SU(2) 的不可约表示 60 9.3. 表示的张量积 62 10. 四个例子 64 10.1. 例 1:各向同性的海森堡模型 64 10.2. 例 2:XXZ 模型 66 10.3. 例 3:AKLT 模型 66 10.4. 例 4:Toric Code 模型 67 11. 无失稳模型 68 11.1. AKLT 链 69 11.2. 具有唯一矩阵积基态的无失稳自旋链 77 11.3. 平移不变矩阵积态的一些性质 78 11.4. 交换性质。 82
本文研究了广义量子态,即C ∗ -代数上的正线性泛函和归一化线性泛函。首先,我们研究了正常态,即用密度算子表示的状态,以及奇异态,即不能用密度算子表示的状态。利用GNS构造,即Gelfand,Neumark和Segal关于C ∗ -代数表示论和投影理论的基本结果,给出了将有界线性泛函分解为量子态的方法。其次,给出了它在量子信息论中的应用。我们研究了协变克隆子,即Heisenberg和Schr¨odinger图像中的量子信道,它们通过移位而协变,并证明了最优克隆子不能有奇异分量。最后,我们讨论了Gelfand-Pettis积分意义下的纯态表示。我们还在本文的不同部分给出了物理解释和例子。
某些量子3个manifold不变的经典*经典算法2024•量子符号对称团聚计划 @ slmath•中西部拓扑研讨会•AMS西部部分张量量张量类别和非社交代数•拓扑和质量<量学<量子<量子学范围•