摘要:抗生素在感染部位的生物利用度低是治疗失败和细菌耐药性增加的主要原因之一。因此,开发新的、非传统的抗生素输送策略来应对细菌病原体至关重要。在这里,我们研究了两种氟喹诺酮类药物环丙沙星和左氧氟沙星封装到聚合物基纳米载体(纳米抗生素)中,目的是提高它们在细菌感染部位的局部生物利用度。优化配方以实现最大药物负载。纳米抗生素的表面用抗葡萄球菌抗体作为配体分子进行修饰,以靶向金黄色葡萄球菌病原体。通过荧光共聚焦显微镜研究了纳米抗生素与细菌细胞的相互作用。常规测试(MIC 和 MBC)用于检查纳米抗生素制剂的抗菌性能。同时,还采用了生物发光分析模型,揭示了对胶体系统抗菌效力的快速有效评估。与游离型抗生素相比,靶向纳米抗生素对金黄色葡萄球菌的浮游生物和生物膜形式均表现出增强的抗菌活性。此外,我们的数据表明,靶向纳米抗生素治疗的疗效可能受其抗生素释放曲线的影响。
深度突变扫描是一种研究各种研究问题(包括蛋白质功能和稳定性)的有效方法。在这里,我们使用高通量 CRISPR 基因组编辑对参与细胞包膜合成的三种必需大肠杆菌蛋白质(FabZ、LpxC 和 MurA)进行深度突变扫描,并研究突变在其原始基因组环境中的影响。我们使用超过 17,000 种蛋白质变体来研究蛋白质功能和单个氨基酸在支持生存力方面的重要性。此外,我们利用这些库来研究针对选定蛋白质的抗菌化合物的抗药性发展。在所研究的三种蛋白质中,MurA 似乎是更优越的抗菌靶标,因为它的突变灵活性低,这降低了获得同时保留 MurA 功能的抗药性突变的机会。此外,我们根据每种化合物的抗药性突变数量对抗 LpxC 先导化合物进行进一步开发排名。我们的结果表明,深度突变扫描研究可用于指导药物开发,我们希望这将有助于开发新型抗菌疗法。
抗生素耐药性对公共卫生和药物开发构成重大威胁,主要原因是医疗和农业环境中抗生素的过度使用和滥用。随着细菌适应逃避现有药物,控制细菌感染变得越来越具有挑战性,导致疾病长期存在、医疗成本增加和死亡率上升。本综述探讨了抗生素在对抗感染中的关键作用以及使细菌能够抵抗抗生素的机制。讨论的主要抗生素包括香芹酚、达巴万星、喹诺酮类、氟喹诺酮类和佐利氟达星,每种抗生素对细菌病原体都有独特的作用。细菌已经进化出复杂的耐药策略,例如产生酶来中和药物、修改药物靶点以及使用外排泵去除抗生素,从而显著降低药物疗效。此外,本综述还研究了抗生素开发中的挑战,包括由于成本高和监管复杂性导致新药发现率下降。创新方法,例如基于结构的药物设计、联合疗法和新的给药系统,因其有可能创造具有增强对抗耐药菌株作用的化合物而受到关注。本评论为旨在对抗抗生素耐药性和推动开发强大的抗菌疗法以确保未来健康安全的研究人员和开发人员提供了宝贵的见解。
抗生素传统上用于治疗细菌感染。但是,细菌可以对药物产生免疫力,使其无效,从而对全球健康构成严重威胁。识别和分类负责这种抗药性的基因对于预防,诊断和治疗感染以及对其机制的理解至关重要。为此目的开发的先前方法主要是基于序列的,这取决于与现有数据库或经过序列特征训练的机器学习模型的比较。但是,具有可比功能的基因可能并不总是具有相似的序列。因此,在本文中,我们开发了一种深度学习模型,该模型使用蛋白质结构作为对序列的补充来对新型抗生素抗生素抗生素基因(ARGS)进行分类,我们期望与单独的序列相比,该抗生素抗生素抗生素的基因(ARGS)提供了更多的有用信息。建议的方法包括两个步骤。首先,我们利用了备受瞩目的字母模型,以预测其氨基酸序列的3D结构。然后,我们使用基于变压器的蛋白质语言模型来处理序列,并将图神经网络应用于从结构中提取的图。我们在标准基准数据集上评估了所提出的体系结构,我们发现它以优于最先进的方法。
抽象的抗生素在生产食物的动植物生产中的不明显使用有助于抗生素耐药性的扩散和探索。此外,食品生产系统中抗性细菌和耐药基因在人类相关,与动物相关和环境微生物群中的扩展,进一步加剧了该问题。Therefore, based on the understanding of the fate and dynamics of antibiotic resis- tance in food production systems, this paper adheres to the One Health framework to support collaborative efforts across multiple sectors to apply preventive measures (e.g., heightening awareness of antibiotic resistance and its confounding factors, strengthening environmental gover- nance and regulatory frameworks, and constructing inte- grated food production surveillance systems) for the缓解抗生素耐药性。本综述提供了有关农业食品生产中抗生素耐药性的来源和传播的最新信息,并提出了一些减轻抗生素耐药性负担的策略。
摘要对人类福祉和公共卫生的最大威胁之一是抗生素抗性。如果允许未经检查,它可能会成为主要的健康风险,并引发另一个大流行。这证明了需要开发与生物抗性相关的全球健康解决方案,这些解决方案考虑了来自各个全球位置的微型数据。建立积极的社会规范,指导支持全球人类健康的个人和群体行为习惯,并最终提高公众对这种行动需求的认识,都可能产生积极的影响。抗生素的分辨率不仅是日益增长的临床关注,而且使治疗复杂化,从而遵守当前管理抗生素耐药性的准则极为困难。许多遗传成分已与抗性发展有关。这些成分中的一些具有复杂的微生物之间传递路径。除此之外,随着确定其发展为开发的新机甲主义,抗生素抗性的主题在医学微生物学中变得越来越重要。除了遗传因素外,诸如误诊,暴露于广谱抗生素和延迟诊断之类的行为还有助于发展耐药性。然而,生物信息学和DNA测序技术的进步已经完全改变了诊断部门,从而实现了抗生素耐药性的成分和原因的实时鉴定。此信息对于制定有效的控制和预防策略以应对威胁至关重要。
是开发抗生素佐剂的新兴靶标是细菌DNA修复和SOS反应途径,它控制了细菌胁迫期间的超突变,水平基因转移,持久细胞的形成和毒力的上调。8 - 13个细菌基因组中的DNA损伤可能是由中性粒细胞在感染过程中产生的氧化爆发或诱导DNA双链断裂(DSB)的抗生素治疗的氧化爆发。在细菌中,DSB的修复是由主要在革兰氏阳性细菌或RECBCD中发现的酶复合物ADDAB启动的,主要是在革兰氏负面的。9 ADDAB和RECBCD是ATP依赖性解旋酶 - 通过DNA加工的复杂生化机理起作用的核酸酶,14-16最终导致3 0单链DNA产生。15多重
这是作者以最终编辑形式发表的文章的手稿,该文章为:Sabrah,A。H. A.,Yassen,G。H.,Liu,W.-C.,Goebel,W。S.A.(2015)。稀释的三重和双抗生素糊的作用对牙髓干细胞和确定的肠球菌生物膜的影响。临床口腔研究,19(8),2059–2066。http://doi.org/10.1007/s00784-015-1423-6
。CC-BY-NC-ND 4.0 国际许可,根据未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2024 年 5 月 8 日发布。;https://doi.org/10.1101/2023.09.26.559507 doi:bioRxiv 预印本
摘要:如前和现在的大流行中,监测环境中的病原体可以提供多种见解,以了解其传播,进化甚至将来的爆发。本文通过在罗马尼亚的市政水和废水中使用纳米孔测序,评估了与特定病原体相关的检测微生物病原体和相关抗生素耐药基因的机会。主要结果表明,从肉类加工设施中收集EF流动的水具有改变社区的多样性和丰度,Chao1的价值(101-108和0.86-0.91)分别降低了,分别是MAIN 2与其他类型的较高的多样性相比,分别是MAINIP的多样性,分别是Simpson的多样性和较高的多样性。和0.97–0.98,伯克霍尔德西亚和伪科学是最丰富的家庭。此外,抗生素耐药性基因的发生率和类型受到抗生素源的近端的影响,其四环素(最高为45%的总读数)或新霉素,链霉素和抗肉霉素(Traptomycin和tobramycin)(总读数为3.8%)(总读数)的耐药性(最高为reads reads)由Same condiestion condivession形成。因此,纳米孔测序被证明是一种易于使用的,可访问的分子技术,用于环境病原体监测和相关的抗生素耐药基因。