癌症疗法在过去十年中取得了巨大进展,但是单药治疗仍然存在明显的局限性,并且缺乏治疗性效率。因此,已广泛探索了多种药物的同时给药,并显示出更好的结果。外泌体,几乎所有活细胞都衍生出天然纳米载体,旨在将药物运送到肿瘤部位。因此,基于外泌体的组合抗肿瘤疗法,例如工程外泌体和化学治疗剂的不同组合,治疗核酸,光敏剂,免疫疗法和植物化学物质具有相当大的前景和潜力。在这里,我们总结了外泌体中癌症组合疗法的当前策略,并提出了未来的机遇和挑战。
摘要:各种 HER2 阳性恶性肿瘤的治疗管理涉及使用 HER2 靶向抗体-药物偶联物 (ADC)。ADC 的主要作用机制是释放细胞毒性化学物质,导致单链或双链 DNA 断裂和细胞死亡。由于内源性和外源性 DNA 损伤不可避免,细胞已经进化出 DNA 损伤修复机制。因此,将 DNA 损伤修复抑制剂和 HER2 靶向 ADC 结合起来可能是治疗 HER2 阳性癌症的实用策略。通过评估细胞生长抑制、凋亡和细胞周期停滞以及体内药效学研究,确定了 HER2 靶向 ADC DS-8201 与 PARPi (AZD2281)(一种靶向聚(ADP-核糖)聚合酶的 DNA 损伤修复抑制剂)和 ATRi (BAY1895344)(抑制丝氨酸/苏氨酸激酶 ATR)联合使用的效果。AZD2281 和 BAY1895344 的联合使用协同增强了 DS-8201 对 HER2 阳性癌细胞生长的抑制作用,诱导 DNA 损伤和凋亡,但对 HER2 阴性的 MDA-MB-231 乳腺癌细胞没有影响。我们的数据表明,DS-8201 和 DNA 损伤修复抑制剂在 NCI-N87 异种移植模型中具有协同抗癌作用,这种作用可能反映了肿瘤组织中 γ-H2AX 蛋白的上调。总之,我们的结果表明,DS-8201、BAY1895344 和 AZD2281 的组合具有显著的协同抗肿瘤活性,这表明 DNA 损伤修复抑制剂与 HER2 靶向 ADC 联合使用是治疗 HER2 阳性恶性肿瘤的潜在方法,为未来的临床应用提供了一种有希望的策略。
摘要 背景 PD-1/PD-L1通路导致肿瘤抗原的丢失和CD8+T细胞的耗竭是肿瘤免疫逃逸的重要因素,近年来,中医药在肿瘤治疗中的研究日益增多,环黄芪醇(CAG)是黄芪中的有效活性分子,具有抗病毒、抗衰老、抗炎等作用,但其抗肿瘤作用及机制尚不明确。方法 在MC38和CT26小鼠移植瘤模型中探究CAG的抗肿瘤作用,通过单细胞多组学测序进一步分析CAG的抗肿瘤作用,利用靶标反应可及性分析技术寻找CAG的靶蛋白,随后利用共聚焦显微镜、免疫共沉淀和突变质粒转染等技术探讨CAG的抗肿瘤机制。最后,研究了CAG与PD-1抗体在小鼠或类器官中的联合抗肿瘤作用。结果我们发现CAG能有效抑制体内肿瘤的生长,我们的单细胞多组学图谱显示CAG促进肿瘤细胞表面抗原的呈递,并以增强CD8+T细胞的杀伤功能为特征。在机制上,CAG与其靶蛋白组织蛋白酶B结合,进而抑制主要组织相容性复合体I(MHC-I)的溶酶体降解并促进MHC-I聚集到细胞膜上,增强肿瘤抗原的呈递。同时,CAG与PD-1抗体的联合使用有效增强了异种移植小鼠和结直肠癌类器官中CD8+T细胞的肿瘤杀伤能力。结论我们的数据首次报道了组织蛋白酶B下调赋予抗肿瘤免疫力,阐明了天然产物CAG的抗肿瘤机制。
然而,开发一种有效的共递送策略将蛋白质和化疗药物直接递送到所需的亚细胞区室(例如细胞核)仍然非常具有挑战性。首先,大蛋白质固有的亲水性和小分子药物的疏水结构使它们难以整合在一起。34,35其次,共递送系统的稳定性对于有效的癌症治疗至关重要,因为过早释放货物会导致不良的副作用并减少肿瘤的积累。基于静电或疏水相互作用将化疗药物整合到蛋白质纳米制剂中的共递送系统存在稳定性差和早期药物泄漏的问题,从而限制了它们的进一步应用。 36 此外,现有替代方法最致命的缺陷是它们无法有效地逃离溶酶体以避免酶降解,37 这对于维持蛋白质活性和促进其细胞质运输到所需的亚细胞靶标以实现更好的生物学功能至关重要。
引言癌症免疫疗法在过去十年中表现出显着进步,免疫检查点阻滞(ICB)针对编程死亡受体1(PD-1)和细胞毒性T-淋巴细胞相关蛋白4(CTLA-4;参考>1,2)。但是,ICB的好处仅限于少数患者,其组合可能会导致严重的免疫相关事件。因此,可以安全地与ICB安全地相互互连的治疗方式的发展将提高其功效并扩大免疫疗法的临床应用。将免疫调节剂直接施用到肿瘤中,即原位疫苗接种,已提出启动局部免疫的可行性(3-6)。可以通过诱导局部抗肿瘤反应的上启动并减少脱靶毒性来极大地改善免疫疗法。此外,这种方式具有广泛的适用性,因为不必鉴定肿瘤抗原。在肿瘤内(IT)免疫疗法中,正在进行许多临床试验,作为单一疗法或结合疗法与常规疗法的不同类型和不同阶段的癌症疗法(7、8)。将免疫肿瘤学整合到介入肿瘤学中的努力将扩大局部方式在体内各种病变中的适用性(9)。tlr激动剂是激活先天免疫系统的小分子,是在积极研究下(3,4)(3,4)和临床(10,11)进行原位疫苗接种的免疫刺激剂之一。16)。但是,它们并不能完全摆脱安全问题,因为肿瘤内注射的小分子倾向于迅速传播到全身循环中,并可能引起全身性不良事件(12-15)。他们不仅需要全身毒性评估,还需要局部分布调制的策略。medi9197,一种带有脂质尾巴的亲脂性TLR 7/8激动剂,旨在通过增强其在肿瘤中的保留并最大程度地减少不良事件(包括全身性暴露)来改善其剂量(4)。它在实体瘤患者中诱导了全身性和IT免疫反应,这意味着其在联合免疫疗法中的潜力(NCT02556463;参考文献
简介程序性细胞死亡 1/程序性细胞死亡配体 1 (PD-1/PD-L1) 检查点阻断是一种很有前途的抗癌治疗方式 (1, 2)。然而,单药治疗(抗 PD-1 或 PD-L1 抗体)未能在许多肿瘤类型中引起有意义的反应,例如胶质母细胞瘤 (3)、胰腺导管腺癌 (PDAC) (4, 5) 和分化型甲状腺癌 (6)。开创性研究表明肿瘤浸润 CD8 + T 淋巴细胞是 T 细胞免疫疗法反应的主要预测指标 (7, 8)。因此,确定调节 CD8 + T 细胞浸润和功能的分子机制可能会拓宽免疫检查点疗法的治疗范围。巨噬细胞是肿瘤微环境 (TME) 中最丰富的免疫细胞类型之一 (9, 10)。一般而言,巨噬细胞可分为经典活化 (M1) 巨噬细胞或替代活化 (M2) 巨噬细胞 (9, 10)。虽然 M1 巨噬细胞可以产生促炎细胞因子并启动针对肿瘤细胞的免疫反应,但 M2 巨噬细胞和 TAM 往往会表现出免疫抑制表型,有利于肿瘤进展 (9, 10)。此前已证明,进入的 CD8 + T 细胞和 TAM 之间的物理接触会降低基质中 T 细胞的运动能力,从而限制其进入肿瘤巢 (11)。 TAM 还可以通过表达免疫检查点配体(例如 PD-L1)(12、13)、分泌免疫抑制细胞因子(例如 TGF-β、LIF、CCL22)(9、10)和限制 T 细胞增殖所需的代谢物(例如通过表达精氨酸酶-1 酶限制 L-精氨酸)(14-16)来抑制 CD8 + T 细胞功能。抑制或消耗 TAM 的努力已在几种临床前模型中显示出良好的抗肿瘤功效,因为它们可以增加 CD8 + T 细胞浸润并减少局部免疫抑制信号(11、17)。此外,TAM 可以限制
简介程序性细胞死亡 1/程序性细胞死亡配体 1 (PD-1/PD-L1) 检查点阻断是一种很有前途的抗癌治疗方式 (1, 2)。然而,单药治疗(抗 PD-1 或 PD-L1 抗体)未能在许多肿瘤类型中引起有意义的反应,例如胶质母细胞瘤 (3)、胰腺导管腺癌 (PDAC) (4, 5) 和分化型甲状腺癌 (6)。开创性研究表明肿瘤浸润 CD8 + T 淋巴细胞是 T 细胞免疫疗法反应的主要预测指标 (7, 8)。因此,确定调节 CD8 + T 细胞浸润和功能的分子机制可能会拓宽免疫检查点疗法的治疗范围。巨噬细胞是肿瘤微环境 (TME) 中最丰富的免疫细胞类型之一 (9, 10)。一般而言,巨噬细胞可分为经典活化 (M1) 巨噬细胞或替代活化 (M2) 巨噬细胞 (9, 10)。虽然 M1 巨噬细胞可以产生促炎细胞因子并启动针对肿瘤细胞的免疫反应,但 M2 巨噬细胞和 TAM 往往会表现出免疫抑制表型,有利于肿瘤进展 (9, 10)。此前已证明,进入的 CD8 + T 细胞和 TAM 之间的物理接触会降低基质中 T 细胞的运动能力,从而限制其进入肿瘤巢 (11)。 TAM 还可以通过表达免疫检查点配体(例如 PD-L1)(12、13)、分泌免疫抑制细胞因子(例如 TGF-β、LIF、CCL22)(9、10)和限制 T 细胞增殖所需的代谢物(例如通过表达精氨酸酶-1 酶限制 L-精氨酸)(14-16)来抑制 CD8 + T 细胞功能。抑制或消耗 TAM 的努力已在几种临床前模型中显示出良好的抗肿瘤功效,因为它们可以增加 CD8 + T 细胞浸润并减少局部免疫抑制信号(11、17)。此外,TAM 可以限制
摘要 背景 过继转移具有增强的抗体依赖性细胞毒作用 (ADCC) 能力和对 CD38 靶向性抗性的自然杀伤 (NK) 细胞有可能增强达雷木单抗 (DARA) 的临床抗骨髓瘤活性。因此,我们试图开发一种有效的基于 CRISPR/Cas9 的基因编辑平台,以破坏离体扩增的 NK 细胞中的 CD38 表达 (CD38 敲除 (KO)),并同时为 CD38 KO NK 细胞配备高亲和力 CD16 (CD16-158V) 受体。方法 使用 Cas9 核糖核蛋白复合物生成 CD38 KO 人 NK 细胞。通过结合信使 RNA (mRNA) 转染 CD38 KO NK 细胞和在 CD38 位点插入靶向基因以介导基因敲入 (KI),扩展了该平台。在体外和 MM.1S 异种移植小鼠模型中测试了这些基因编辑的 NK 细胞在 DARA 存在下持续存在和介导 ADCC 的能力。结果在体外扩增的 NK 细胞中实现了高效的 CD38 基因破坏,而不会影响其增殖或功能能力。CD38 KO 赋予了对 DARA 诱导的 NK 细胞自相残杀的抗性,在体外和 MM.1S 异种移植小鼠模型中,在 DARA 存在下,能够持续存在并增强对骨髓瘤细胞系的 ADCC。CD38 KO NK 细胞可以通过转染编码 CD16-158V 受体的 mRNA 进一步修饰,从而增强 DARA 介导的 ADCC。最后,我们观察到针对 CD38 基因座的同源定向修复模板促进了有效的 2 合 1 CD38 KO 与截短 CD34 报告基因和 CD16-158V 受体的 KI 结合,CD38 KO /CD16 KI NK 细胞在体外和体内均表现出 DARA 介导的 ADCC 的进一步增强。结论使用体外扩增的 CD38 KO /CD16 KI NK 细胞进行过继免疫治疗有可能提高 DARA 的临床疗效。通过将互补的基因工程策略整合到 CD38 KO 制造平台中,我们生成了具有显著增强的 CD38 定向抗肿瘤活性的 NK 细胞,为在临床上探索这种免疫治疗策略奠定了坚实的基础。
摘要 背景 治疗性癌症疫苗的临床成功取决于能否激发强大而持久的抗肿瘤 T 细胞反应。为实现这一目标,非常需要有效的细胞佐剂。白细胞介素-1 β (IL-1 β ) 作用于 CD8 + T 细胞并促进其扩增和效应子分化,但毒性和不良的促癌副作用阻碍了这种细胞因子的有效临床应用。方法 这种“细胞因子问题”可以通过使用 AcTakines(靶向活性细胞因子)来解决,AcTakines 代表低活性细胞因子突变体和细胞类型特异性单域抗体之间的融合。AcTakines 将细胞因子活性传递给先验选择的细胞类型,从而避免毒性和不必要的脱靶副作用。在这里,我们采用皮下黑色素瘤和肺癌模型来评估 AcTakines 的抗肿瘤作用。结果 在这项研究中,我们使用基于 IL-1 β 的 AcTakine 来驱动抗肿瘤 CD8 + T 细胞的增殖和效应功能,而不会引起可测量的毒性。AcTakine 治疗可增强 T 细胞受体库的多样性并促进过继性 T 细胞转移。与新生血管靶向肿瘤坏死因子 (TNF) AcTakine 联合治疗可介导完全肿瘤根除并建立免疫记忆,以防止继发性肿瘤攻击。发现干扰素-γ 通过使肿瘤微环境对 TNF 敏感来增强这种 AcTakine 协同作用。结论我们的数据表明,使用基于 IL-1 β 的 AcTakine 可以安全地促进抗癌细胞免疫,它与其他免疫疗法协同作用以有效破坏肿瘤。
抽象的人参皂苷是从Panax人参分离的主要成分,可以通过诱导肿瘤细胞凋亡并减少增殖,侵袭,转移来发挥治疗作用。通过增强免疫调节;并通过逆转肿瘤细胞多药耐药性。然而,由于人参皂苷的物理和化学特性,例如低溶解度和稳定性较差,临床应用受到限制,以及它们的半衰期短,易于消除,降解,降解和其他药物性特性。近年来,开发用于双功能药物或载体的人参固醇递送系统引起了研究人员的广泛关注。为制定基于人参糖苷的多种纳米递送系统和制备技术的精确治疗策略(例如,聚合物纳米颗粒[NPS],脂质体,胶束,胶束,微乳胶,微乳液,蛋白质NP,蛋白质NPS,金属和无机NPS,Inorangic NPS,生物学Metic NPS)。希望设计有针对性的递送系统以达到抗肿瘤功效,不仅可以跨越各种障碍,而且可以增强免疫调节,最终转化为临床应用。因此,这篇综述着重于有关用人参皂苷封装或修饰的有关输送系统的最新研究,以及基于人参皂苷的药物和赋形剂的统一,以提高药物生物利用度和靶向能力。此外,还讨论了挑战和新的治疗方法,以支持这些新的肿瘤治疗剂用于临床治疗。关键字:人参固醇,抗肿瘤,输送系统,仿生,双功能药物,载体,药物和赋形剂的统一