最初发表于:Alphandéry, Edouard (2020)。用于治疗应用的氧化铁纳米粒子。《今日药物发现》,25(1):141-149。DOI:https://doi.org/10.1016/j.drudis.2019.09.020
抽象球样二氧化葡萄纳米颗粒是通过热液法合成的。使用各种技术研究了所得的样品,包括X射线粉末衍射光谱(XRD),高分辨率扫描电子显微镜(HRSEM),能量分散X射线光谱(EDX),电子显微镜(TEM)和Ultraviolet可见吸收光谱(UVIS)。通过X射线衍射分析确定,立方荧光岩的晶体结构及其平均粒径范围在10-20 nm之间。使用高分辨率扫描电子显微镜测定二氧化岩纳米颗粒的直径。透射电子显微镜显示,二氧化岩纳米颗粒是球形的,直径约为15.3 nm。能量分散性X射线光谱显示出高度纯的二氧化岩纳米结构。通过紫外可见的吸收光谱估计二氧化岩岩的带隙能量为3.34 eV。此外,通过价带孔的作用,实现了刚果红色染料的最大光催化活性和最大光降解效率。
摘要:在多种生物医学应用中,类似病毒样颗粒(VLP)作为纳米镜出现,包括疫苗抗原和货物(例如mRNA)到粘膜表面的货物。这些软,胶体和蛋白质结构(衣壳)仍然容易受到粘膜环境应力因素的影响。,我们使用同质功能的聚乙烯甘油三甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基氨基酸残基交联多个衣壳表面氨基酸残基,以提高衣壳的持久性和存活率以模拟粘膜应激源。表面交联增强了从低pH值(向下pH 4.0)和高蛋白酶浓度条件(即在猪和小鼠胃液中)组装的VLP的稳定性。此外,它增加了使用原子力显微镜悬臂尖端应用的局部机械压痕下VLP的刚度。小角度X射线散射显示交联后的衣壳直径增加,并且与PEG交联的长度增加了衣壳壳的厚度。此外,表面交联对VLPS的粘液易位和积累在体外3D人类鼻上皮组织的上皮上的积累没有影响。最后,它并未损害VLPS在小鼠皮下疫苗接种模型中的疫苗功能。与没有交联的脉络化相比,相同长度的PEG分子的表面交联VLP的刚度更高,并且在胃液中表面交叉连接的VLP的寿命更长。使用大分子系tether的表面交联,但不是对这些分子的简单结合,因此提供了一种可行的手段来增强VLP对粘膜应用的弹性和存活。关键字:病毒样颗粒疫苗,粘膜递送,纳米压力,粘液相互作用,聚乙烯甘油二醇,生物医学应用V
这些变化可能包括改变酶活性,氧化应激,炎症和细胞损伤。ZnO-NP已显示可诱导活性氧(ROS)产生,引起肾脏和肝脏的氧化应激和细胞的破坏(Hussain等,2016; Wang等,2017; Moatamed et al。In the kidney, exposure to ZnO-NPs has been (Hussain et al., 2016; Wang et al., 2017; Moatamed et al., 2019; Khan et al., 2020; Pei et al., 2023 ), linked to nephrotoxicity, which can manifest as impaired renal function, glomerular damage, tubular injury, and inflammation.在肝脏中,ZnO-NP暴露与肝毒性有关,其特征是肝炎,氧化应激,脂质过氧化和肝细胞损伤。Vitamin C和N-乙酰半胱氨酸是自然存在的化合物,以众多的水果,蔬菜和草药为生,以其抗炎特性以及抵消由多种剂所引起的毒性而闻名,由重金属,农药和纳米粒子(例如Ay et ay et ay等)。鉴于ZnO-NP对肾脏和肝脏健康的潜在有害影响,探索潜在的保护性干预措施至关重要(Hashim等,2022; Ali等,2024)。有限的发现重点是评估NAC和维生素C对ZnO-NP诱导的肾脏和肝毒性的保护作用。因此,本研究的目的是找出N-乙酰半胱氨酸和维生素C对锌 - 氧化物纳米颗粒诱导雄性Wistar大鼠的肝肾毒性的改善作用
描述了生物工程P4- ekorhe的构建以及一种可产生非常高产量(每毫升最多10个12个颗粒)的综合方法,从而可以通过合成生物学和优化的Upstream和下链式处理,可以使用类似病毒的颗粒来转导类似病毒的颗粒来转导类似病毒的颗粒。最终产物是一种以多透明素的形式散布的基因溶剂抗菌剂,在p4- ekorhe颗粒内包装之前和之后都是完全可正常的。以其裂解蛋白为特征的多肌蛋白盒的抗菌活性在纯细菌大肠杆菌(大肠杆菌)培养物和使用A549的感染模型中在体内进行了测试。这项工作例证了几种生物生物生产方法,并演示了如何利用P4和P2噬菌体的病毒学建立生物处理,以产生非常高产量的转导颗粒,从而避免自然病毒在维持最终产物抗药性的同时,避免自然病毒。
116 试剂和酶。除非另有说明,试剂和酶均从 Sigma-Aldrich(英国)购买。碳网格(400 平方目铜)从 Micro to Nano(荷兰)购买,醋酸铀酰溶液由巴塞罗那自治大学的显微镜服务部门提供。Sup35- 121 SAC 肽从 CASLO ApS(Scion 丹麦技术大学)购买。122 蛋白质的表达和纯化。克隆到带有 His6 标签的质粒 pET28(a) 中的 Sup35- 123 5aa-DHFR 的 cDNA 是从 GenScript 获得的。通过在 128 质粒 pET28(a)/Sup35-5aa-DHFR 上进行诱变,获得了构建体 pET28(a)/Sup35-8aa- 126 DHFR、pET28(a)/野生型 DHFR (DHFR-wt) 和 pET28(a)/ 127 Sup35-5aa-DHFR-Z。用相应的质粒转化大肠杆菌 BL21 (DE3)- 129 感受态细胞。130 然后,将转化细胞在 10 mL 溶源性肉汤 (LB) 中培养
lspm,CNRS,巴黎大学13 Sorbonne ParisCité,99 AV。J.B.Clément,93430 Villetaneuse,法国。B LPICM,CNRS,Ecole Polytechnique,Palytechnique de Paris,Palaiseau,法国91128,法国。*通讯作者:karim.ouaras@polytechnique.edu摘要抽象的低压等离子体过程通常用于生长,功能化或蚀刻材料,并且由于其某些独特的属性,等离子体已成为某些应用(例如微电源)的主要参与者。但是,在纳米颗粒的合成和功能化方面,等离子体过程仍处于研究级别。Yet plasma processes can offer a particularly suitable solution to produce nanoparticles having very peculiar features since they enable to: (i) reach particle with a variety of chemical compositions, (ii) tune the size and density of the particle cloud by acting on the transport dynamics of neutral or charged particles through a convenient setting of the thermal gradients or the electric field topology in the reactor chamber and (iii) manipulate nanoparticles and deposit them directly在底物上,或与连续膜一起编码,以生产纳米复合材料,或(iv)将它们用作模板生产一维材料。在本文中,我们通过结合时间分辨和原位激光灭绝和散射诊断,QCL吸收光谱,质谱,质谱,光学发射光谱和SEM以及颗粒粒子转运模型,对低压微波等离子体中的纳米颗粒合成和动力学进行实验研究。我们首次展示了无电微波等离子体中粒子云的嗜热动力学。我们表明,这种作用与血浆组成中的特殊波动有关,并导致大部分血浆中的空隙区域形成,这些等离子体被颗粒云包围,并在周围性后造成的颗粒云中围绕。我们还揭示并分析了前体的分离和分子生长的动力学,从而在观察的nanoparticle nanapictical nanapticle中产生了分子生长。引言尘土或复杂的等离子体研究在诸如能源和环境等钥匙技术领域的背景下至关重要
参考文献 1. Maertens, GN 等人 (2022) 逆转录病毒整合酶的结构和功能。《自然微生物学评论》20,20-34。 2. https://en.wikipedia.org/wiki/Alteplase 3. Ono, M. 等人 (1985) 叙利亚仓鼠体内 A 型颗粒基因的核苷酸序列:A 型颗粒基因与 B 型和 D 型肿瘤病毒基因的密切进化关系。《病毒学杂志》387-394。 4. Wurm, FM 等人 (1989) CHO 细胞中内源性逆转录病毒样 DNA 序列的存在和转录。在:动物细胞生物学和生物过程技术的进展。编辑 RE Spier、JB Griffiths、J. Ste- phenne 和 PJ Crooy,76-81,Butterworths。 5. Anderson, KP 等人(1990) CHO 细胞内池内 A 粒子相关序列的存在和转录。病毒学杂志 64 (5), 2021-2032。 6. Venter, JC 等人 (2001)。人类基因组序列。科学。291 (5507): 1304–1351。 7. Duroy, PO. 等人 (2019) 中国仓鼠卵巢细胞内源性逆转录病毒的表征和诱变以灭活颗粒释放。生物技术生物工程。DOI:10.1002/bit 27200 8. Li, S. 等人 (2019) 中国仓鼠的蛋白质组学注释揭示了大量新的翻译事件和内源性逆转录病毒元件。蛋白质组研究杂志,18(6), 2433–2455。 https://doi. org/10.1101/468181 9. Naville, M., Volff, J.-N. (2016) 鱼类基因组中的内源性逆转录病毒:从过去感染的遗迹到进化创新?微生物学前沿 doi:3389/fmicb.2016.01197 10. Löwer, R. 等人 (1996) 我们所有人体内的病毒:人类内源性逆转录病毒序列的特征和生物学意义。PNAS 93, 5177-5184 11. Patel, MR 等人 (2011) 古病毒学——过去病毒的幽灵和礼物。Curr. Opin.Virol. 1, 304-309 12. Reid, GG 等人(2002):用于生产生物制剂的小鼠和中国仓鼠细胞系中内源性逆转录病毒计数的电子显微镜技术比较。J. Virol. Meth. 108, 91-96 13. Stocking, C., Kozak, C. (2008) 小鼠内源性逆转录病毒。Cell.Mol. Life Sci. 65, 3383-3398 14. Wurm, FM (2013) CHO 准种 – 对制造工艺的影响。工艺 1,3, 296-311 15. Wurm, FM, Wurm, MJ (2017):CHO 细胞的克隆、生产力和遗传稳定性 – 讨论。工艺 2017, 5, 20, doi: 103390/pr5020020