摘要 - 组身份验证是一种验证多个用户的组成员并在其中建立共享的秘密密钥的技术。与依靠中央权威来单独身份验证每个用户的常规身份验证方案不同,小组身份验证可以同时为所有参与的成员同时执行身份验证过程。群体身份验证已被发现是物联网(IoT)环境中拥挤的各种应用的合适候选者,例如用于农业,军事,监视的无人机群,一组设备需要在其中建立一个安全的身份验证的通信渠道。最近呈现的组身份验证算法主要是在有限场上进行Lagrange多项式插值以及椭圆曲线组。基于多项式插值的组身份验证方案具有脆弱性,可以在此过程中任何单个实体中断恶意中断。此外,此方案要求每个实体获得所有其他实体的令牌,这在大规模环境中是不切实际的。身份验证和关键设施的成本也取决于用户数量,从而创建了可伸缩性问题。作为消除这些问题的新方法,这项工作表明将内部产品空间用于群体认证和关键建立。使用线性空间的方法引入了减少的计算和通信负载,以在组成员之间建立共享的共享密钥。该计划的设计方式是,该组成员的赞助商可以很容易地被小组中的任何人识别。除了提供轻巧的身份验证和关键协议外,该方法还允许组中的任何用户使非成员成为成员,该成员有望将来对自治系统有用。与基于拉格朗日的多项式插值的其他小组身份验证方案不同,该建议的方案并不能通过仅使用几个成员的股份来妥协对手来妥协整个小组秘密的工具,因为它可以轻松识别非成员,从而防止了对以前的团体拒绝对以前的服务攻击的攻击。
假冒产品通过破坏消费者信任,降低品牌价值甚至带来严重的安全风险,对品牌构成了严重威胁。UCODE Guard不仅提供了一种有效的方法来帮助减少市场中的假货商品数量,还可以通过确保仅将真实的零件用于汽车维修,减少假冒药品或疫苗的重大事件,甚至简单地降低召回成本,从而帮助提高安全性。
摘要。随着越来越多的企业资产移动到云环境,基于传统的外围安全体系结构的能力正在迅速降低。从安全角度来看,零信任框架可以更好地跟踪和阻止外部攻击者,同时限制云范式内部攻击而导致的安全漏洞。此外,零信任可以更好地完成跨云环境的用户和设备的访问权限,以实现资源的安全共享。此外,云计算中零信任体系结构的概念需要在系统体系结构多层上集成复杂实践,以及各种现有技术的结合。本文着重于身份验证机制,信任评分的计算以及生成政策,以建立对资源的访问控制。主要目标是将无偏信的信任评分纳入政策表达的一部分,同时保留感兴趣的参数的可配置性和适应性。最后,在微云平台解决方案上展示了概念证明。
下表基于公开信息,说明了各种常见解决方案如何声称满足 SP 800-63-3 所支持机制类型的标准。下表包括过去 2 年内完成联邦信息处理标准 (FIPS) 验证的常见解决方案,以及当前获得国防部批准的非 FIPS 验证解决方案。如果身份验证器或验证器通过 FIPS 140-2 验证,则会列出证书编号。验证器的本地实施需要 NIST SP 800-53 中等基线安全控制(AAL 2)和高基线控制(AAL 3),如验证器列中所述 - 具体列出了其他依赖项。部分 AAL 合规是指缺乏合规证据的解决方案 - 并注明需要的具体要求。由于标准取决于身份验证器的具体类型,因此在表格的“类型”列中使用以下键表示:
PAD 使用扫描探针显微镜 (SPM) 中探针的尖端加载力和偏置脉冲来实现精确的区域控制和随后的验证成像,以从源材料的薄上层注入掺杂剂。与其他确定性掺杂技术相比,相对较大的 (20 x 20) 2-D 超晶格可以轻松形成,对半导体表面的影响最小。 PAD 的其他优势包括 (i) 无需光刻即可实现掺杂半导体的多种图案,以及 (ii) 与传统的侵入式离子注入工艺相比具有高度选择性掺杂。虽然其他确定性掺杂工艺(例如激光增强沉积和单离子按需技术)可能具有一些优势,但它们更复杂并且需要大量的设备投资 [9]。 PAD 设计和制造的自由度促进了复杂集成半导体器件的一种新型低成本识别标签的出现。由于不涉及光刻工艺,因此可以使用不同的结构和元素配置对阵列的每个元素进行唯一编程。
摘要:在当今的信息时代,我们通常以远程信息处理的方式访问个人和专业信息,例如银行帐户数据或私人文件。为了确保这些信息的隐私,应准确开发用户身份验证系统。在这项工作中,我们专注于生物特征认证,因为它取决于用户的固有特征,因此可以提供个性化的身份验证系统。具体而言,我们提出了一种基于心电图 (EEG) 的用户身份验证系统,该系统采用单类和多类机器学习分类器。从这个意义上讲,本文的主要创新之处在于引入了孤立森林和局部异常因子分类器作为用户身份验证的新工具,并研究了它们与 EEG 数据的适用性。此外,我们确定了对身份验证贡献较大的 EEG 通道和脑电波,并将它们与传统的降维技术、主成分分析和 χ 2 统计检验进行了比较。在我们的最终提案中,我们详细阐述了一种使用孤立森林和随机森林分类器的抵抗随机伪造攻击的混合系统,最终获得 82.3% 的准确率、91.1% 的精确率和 75.3% 的召回率。
基于大脑信号的生物识别系统是一种新颖的方法,可用于更直观,健壮和用户友好的身份验证。al-尽管以不同的视觉刺激进行了以前的研究,但很少考虑用于大脑信号的音乐刺激。在本文中,提出了用脑电图和音乐刺激的用户身份验证系统的新框架。EEG数据每周一次从16位健康参与者中收集了三周。尽管不同类型的音乐引起了不同的响应,但用户可以根据其大脑信号识别。实验结果表明,当使用这种方法时,最佳的分类精度率约为96.75%。这些结果表明,音乐引起的反应带来了参与者区分特征,这可能被用作生物特征。
在Web应用程序的开发中,互联网技术的快速发展带来了前所未有的机会,并增加了对用户身份验证方案的需求。在区块链技术出现之前,建立两个陌生的实体之间的信任,依靠可信赖的第三方进行身份验证。但是,这种值得信赖的第三方的失败或恶意行为可能破坏此类身份验证方案(例如,单点失败,凭证泄漏)。安全授权系统是用户身份验证方案的另一个要求,因为用户必须授权其他实体在某些情况下代表其行事。如果身份验证许可的转让不足,则可能会发生诸如未经授权转移到实体的安全风险。一些研究提出了基于区块链的分散用户身份验证解决方案,以解决这些风险并提高可用性和可审核性。,众所周知,大多数提出的计划允许用户将身份验证权限转移到其他实体中,需要在智能合约中部署和触发时大量的天然气消耗。为了解决此问题,我们提出了一种仅基于哈希功能的可转让性的身份验证方案。通过将一次性密码与Hashcash相结合,该方案可以限制可以在确保确定性的同时传输权限的次数。此外,由于它仅依赖哈希功能,我们提出的身份验证方案在智能合约中的计算复杂性和气体构成方面具有绝对的优势。此外,我们已经在Goerli测试网络上部署了智能合约,并证明了这种身份验证方案的实用性和效率。
Healthcare 4.0是一个异质环境,许多智能医疗设备都可以连接以提供及时的医疗服务。作为下一代医疗保健4.0,可以在多个设备和通信技术上进行更多数字化和相互联系的服务,因此潜在攻击的可能性也大大扩展。关键医疗保健涉及高度敏感的患者数据,必须满足严格的监管要求。因此,合并零信任体系结构(ZTA)至关重要,以提供一个可靠的框架,以确保安全和保障防止不断发展的威胁。这项工作提出了一个框架,该框架可利用Healthcare 4.0的基于ZTA的连续轻质相互验证策略,以完成设备,边缘和云服务器之间的安全数据传输。这是一种灵活且轻巧的身份验证策略,它考虑了Healthcare 4.0中的所有实体,不受信任,并在每次会议期间都可以连续身份验证,以确保针对各种漏洞的高安全性。基于两个不同级别的连续和相互认证是在两个不同的级别上完成的。首先,基于动态哈希的消息身份验证代码(HMAC)的连续相互轻量级身份验证被利用了两种不同的传输,这些传输是设备到设备(D2D)和设备对边缘(D2E)。此外,该框架以三种方式分析其效率:基于Scyther-Tools的安全性分析,理论分析和基于仿真的分析。因此,它在安全性和资源消耗之间取得了更好的权衡,而不是资源受限的医疗保健4.0 Devicessecond,该框架采用了椭圆曲线加密加密标准(ECC-AES)基于重量的重量身份认证和基于身份的重量身份验证和基于基于身份的访问控制(IBAC)来启用Edge Control in Edge Control in Edge Condor to Cloud Server(E2C)。此外,基于Contiki/Cooja的模拟证明,所提出的框架是医疗保健4.0环境中各种D2D和D2E身份验证协议中的强大竞争者。
摘要 — 我们解决了支持后量子密码 (PQC) 及其在安全关键型车对车 (V2V) 通信中的巨大开销这一非典型挑战,处理了 V2V 有限无线电频谱内严格的开销和延迟限制。例如,我们表明,当前用于支持 V2V 签名验证的频谱几乎不可能采用 PQC。因此,我们提出了一种消息签名证书传输的调度技术(我们发现目前高达 93% 的冗余度),该技术可以学习自适应地减少无线电频谱的使用。结合使用,我们设计了 PQC 和 V2V 的第一个集成,在可用频谱的情况下满足上述严格约束。具体而言,我们分析了 NIST 为标准化而选择的三种 PQ 签名算法以及 XMSS (RFC 8391),并提出了一种部分混合身份验证协议(传统密码学和 PQC 的定制融合),用于我们概述的向完全 PQ V2V 过渡的初期过渡期的 V2V 生态系统中。我们的可证明安全协议有效地平衡了安全性和性能,这一点已通过软件定义无线电 (USRP)、商用 V2V 设备以及道路交通和 V2V 模拟器进行了实验证明。我们展示了我们的联合传输调度优化和部分混合设计在现实条件下可扩展且可靠,与目前最先进的技术相比,平均延迟微不足道(每条消息 0.39 毫秒)。